
A Rule-based Approach to

Modeling of Semantically-enriched Web Services
Marko Ribarić1, Dragan Gašević2, Milan Milanović3

1Mihajlo Pupin Institute, Serbia
2School of Computing and Information Systems, Athabasca University, Canada

3FON-School of Business Administration, University of Belgrade, Serbia

marko.ribaric@institutepupin.com, dgasevic@acm.org, milan@milanovic.org

Abstract – Web services are usually defined as autonomous,

platform-independent computational elements that can be

described, published, discovered, orchestrated and programmed

using standard protocols for the purpose of building networks

of collaborating applications distributed within and across

organizational boundaries. Semantic Web services present the

augmentation of Web service descriptions through Semantic

Web annotations (e.g., references to ontologies), to facilitate

higher automation of service discovery, composition,

invocation, and monitoring on the Web. Today, there is a need

for effective mechanisms for modeling Web services where as

creation of these mechanisms for Semantic Web services (SWS)

modeling is especially challenging, as SWS are relatively new

technology. In this paper, we propose a modeling approach that

enables one to model Semantic Web services from the

perspective of the underlying business logic regulating how

Web services are used regardless of the context where they are

used. This is done by modeling Semantic Web services in terms

of message-exchange patters, where each service is described by

a (set of) rule(s) regulating how Web services’ messages are

exchanged. We show how our approach can be used with the

recent W3C recommendation SAWSDL (Semantic Annotations

for WSDL and XML Schema)

I. INTRODUCTION

During the past few years, service oriented architecture

(SOA) has become a dominant architecture style in industry.

Combining smaller services into larger services is the core

requirement in service-oriented architectures (SOAs).

According to Papazoglou and Georgakopoulos [31] the

process of service composition encompasses necessary roles

and functionality for the consolidation of multiple services

into a single composite service. The resulting composite

services may be used by service aggregators as components

in further compositions or may be utilized as applications by

clients.

Web services proved to be the most mature framework

toward achieving the SOA goal [4], since they are based on a

set of XML based standards for description, publication, and

invocation of services ([1], [2], [3]). However, researchers

have found that the mere usage of basic Web service

standards would not create scalable solutions [5]. A solution

to search, integration, and meditation in large scale, open

and heterogeneous environments was needed, and it was

found in the area of Semantic Web. The use of semantics in

Web services solves those problems by bringing several

improvements, including [26]: better reuse (semantics

improves finding of relevant services), better interoperability

(semantics allows development of mappings of data that is

being exchanged between the services) and easier

composition of services.

Researchers proposed Semantic Web services that took

approach of annotating service elements with terms from

domain models, including industry standards, vocabularies,

taxonomies, and ontologies [6]. In this paper, we will focus

on the recent W3C recommendation SAWSDL (Semantic

Annotations for WSDL and XML Schema) [7]. SAWSDL is

built on existing Web standards using only extensibility

elements, and thus taking evolutionary approach rather then

revolutionary. By adopting this philosophy, SAWSDL offers

an elegant mechanism that allows the externalization of the

semantic domain models. This mechanism is fully agnostic

to ontology representation languages; it allows the reuse of

existing domain models; and also allows annotation using

multiple ontologies [26].

In this paper we propose the use of a high-level modeling

approach in the process of developing semantically

annotated Web services. That is, our approach is based on

the principles of Model Driven Engineering (MDE) [27]. By

using MDE, we can first define a modeling language that is

suited for modeling specific problem domains (in our case

business logic that should be supported by Web services).

Models created by such modeling languages can later be

transformed (by using model transformation languages) into

different implementation platforms [11].

Web services are usually jointly used to realize more

complex functionality, typically a business process. A

business process specifies the potential execution order of

operations from a collection of Web services, the data shared

between these Web services, which partners are involved

and how they are involved in the business process, and other

issues involving how multiple services and organizations

participate [12]. So, there exists a need to support workflow-

independent services modeling, and yet to consider some

potential patterns or conditions under which a specific

service can be used. In this paper, we propose focusing the

design perspective from the question where (or in what

context) to the question how a service is used. To do so, our

proposal is to leverage message-exchange patterns (MEPs)

as an underlying perspective integrated into a Web service

modeling language.

Also, our solution involves the use of rules for addressing

highly dynamic nature of business systems. By using rules,

one can dynamically reflect business logic changes at run-

time without the need to redesign the system. Since Web

services are used for integration of business processes of

various stakeholders, it is important for them to reflect

changes in business logic, or policies, as good as possible.

This means if we can support the definitions of services

based on rules, we can also reflect changes in service-

oriented processes dynamically. This has already been

recognized in the service community, where Charfi and

Mezini [13] demonstrate how rules can be used to make

more dynamic business processes based on service-oriented

architectures. However, developers need development

mechanisms that will allow them for building and later

updating Web services based on such changes. Thus, we

propose using rule-based approaches to modeling Web

services [14]

This way of modeling Web services we thoroughly

explained in [8]. In this paper, we further expand this

process for the need of modeling Semantic Web services,

specifically we concentrate on the use of SAWSDL. It is

important to emphasize that this solution presented here, is

made under the assumption that domain model and domain

ontology are the same (see Sect. 3 for details), meaning that

our SAWSDL annotations do reference just the classes we

use to describe our domain model (i.e. our working

Vocabulary).

The paper is structured as follows. Section 2 gives a brief

introduction to technologies that we use in our approach, i.e.

we give a brief definition of the languages on which our

solution is based, including, UML-based Rule Language

(URML), REWERSE Rule Markup Language (R2ML) [9],

and SAWSDL (where SAWSDL subsection also

summarizes the advantages we get by employing semantics

to Web services). In Section 3, we describe the modeling of

Semantic Web services from the perspective of MEPs

(message exchange patterns). In Section 4, we give a process

of transformation between rule-based models to the

SAWSDL, as a part of the tooling support that we have

implemented to support our approach [10]. And, finally in

section 5 we conclude the paper.

II. BACKGROUND

A. R2ML

R2ML (REWERSE Rule Markup Language) is a rule

language that addresses all the requests defined by the W3C

working group for the standard rule interchange format [17].

The R2ML language is defined by MDE principles. The

R2ML language can represent different types of rule

constructs, that is, it can represent different types of rules

[18], including, integrity rules, derivation rules, production

rule, and reaction rules. Integrity rules in R2ML, also known

as (integrity) constraints, consist of a constraint assertion,

which is a sentence in a logical language such as first-order

predicate logic or OCL. Derivation rules in R2ML are used

to derive new knowledge (conclusion) if a condition holds.

Production rules in R2ML produce actions if the conditions

hold, while post-conditions must also hold after the

execution of actions. A reaction rule is a statement of

programming logic [19] that specifies the execution of one

or more actions in the case of a triggering event occurrence

and if rule conditions are satisfied. Optionally, after the

execution of the action(s), post-conditions may be made true.

R2ML also allows one to define vocabularies by using the

following constructs: basic content vocabulary, functional

content vocabulary, and relational content vocabulary.

Here, we give short description of vocabulary constructs

that we use in this paper. Vocabulary is a concept (class) that

can have one or more VocabularyEntry concepts.

VocabularyEntry is abstract concept (class) that is used for

representing other concepts by its specialization. For

example, one of the VocabularyEntry-s is an R2ML Class

concept which represents the class element similar to the

notion of the UML Class. An R2ML Class can have

attributes (class Attribute), reference properties (class

ReferenceProperty) and operations (class Operation).

Fig. 1. The definition of reaction rules in the R2ML metamodel

Due to the importance for our Web service modeling

approach, here we only describe the details of R2ML

reaction rules. Reaction rules represent a flexible way for

specifying control flows, as well as for integrating

events/actions from a real life [19]. Reaction rules are

represented in the R2ML metamodel as it is shown in Fig. 1:

triggeringEvent is an R2ML EventExpression (the R2ML

event metamodel defines basic concepts that are needed for

dynamic rule behavior - each of those concepts is subclassed

from the EventExpression class); conditions are represented

as a collection of quantifier free logical formulas;

producedAction is an R2ML EventExpression and represents

a system state change; and (optional) postcondition must

hold when the system state changes.

B. URML

UML-Based Rule Modeling Language (URML) is a

graphical concrete syntax of R2ML. URML is developed as

an extension of the UML metamodel to be used for rule

modeling. In URML, modeling vocabularies is done by

using UML class models. Rules are defined on top of such

models. The URML reaction rule metamodel, which we use

for modeling services, is shown in Fig. 2a. The figure shows

components of a reaction rule: Condition, Postcondition,

RuleAction and EventCondition. The figure also shows that

reaction rules are contained inside the UML package which

represents Web services operation. This means, that such

packages have a stereotype <<operation>> in UML

diagrams. An instance of the EventCondition class is

represented on the URML diagram as incoming arrow (e.g.,

see Fig. 4), from a UML class that represents either an input

message or an input fault message of the Web service

operations, to the circle that represents the reaction rule. The

UML class that represents the input message (input-

Message in Fig. 2b) of the Web service operation is

MessageEventType (a subclass of EventType) and it is

represented by using the <<message event type>> stereotype

on UML classes. The UML class that represents the input

fault message (inFault in Fig. 2b) of the Web service

operation is FaultMessageEventType in the URML

metamodel. In URML diagrams, FaultMessageEventType is

represented by the <<fault message event type>> stereotype

on UML classes. EventCondition contains an object variable

(ObjectVariable in Fig. 2c), which is a placeholder for an

instance of the MessageEventType class.

An instance of the RuleAction class is represented as an

outgoing arrow on the URML diagram, from the circle that

represents the reaction rule to the class that represents either

an output message or an output fault message of the Web

service operation. The UML class that represents the output

message (outputMessage in Fig. 2c) of the Web service

operation is MessageEventType and it is represented with

the <<message event type>> stereotype on UML classes.

The UML class that represents the output fault message

(outFault) of the Web service operation is

FaultMessageEventType in the URML metamodel and it is

represented with the <<fault message event type>>

stereotype on UML classes. RuleAction also contains an

object variable (ObjectVariable), which represents an

instance of the MessageEventType class.

a) b) c)

Fig. 2. a) Extension of the URML metamodel for reaction rules; b) Part of the URML metamodel

for EventCondition; c) Extension of the URML metamodel for actions

C. SAWSDL

Web services are a key enabler for service-oriented

architectures that focus on service reuse and interoperability

[5]. Researchers found that for reaching this interoperability

goal some form of semantics needed to be added to services.

They offered many advantages of doing so: e.g. in [25]

authors say that: 1) models that employ semantics promote

reuse and interoperability among independently created and

managed services, 2) ontology supported representations

based on formal and explicit representation lead to more

automation, and 3) explicit modeling of the entities and their

relationships between them allows performing deep and

insightful analysis. In [23], authors stress that issues of

structural and semantic heterogeneity between messages

exchanged by Web services are crucial to interoperability. In

that paper, authors further classify structural and semantic

message level heterogeneities as: (a) Domain level

incompatibilities that arise when semantically similar

attributes are modeled using different descriptions. (b) Entity

definition incompatibilities that arise when semantically

similar entities are modeled using different descriptions. (c)

Abstraction level incompatibilities that arise when two

semantically similar entities or attributes are represented at

different levels of abstraction. Paper [24] points out that

using ontologies not only brings user requirements and

service advertisements to common conceptual space, but

also helps to apply reasoning mechanism to find a better

match.

Currently, Web services are described using WSDL

descriptions [1]. WSDL document contains one root element

called Description. Description component contains Schema,

Interface, Binding, and Service components. Schema

component’s purpose is to define data types that are being

used in messages (WSDL most frequently relies on the XML

schema for this task). Interface component describes a

sequence of messages the service sends and/or receives. This

is achieved by grouping messages into operations. Operation

component describes an operation a given interface supports.

Operation presents service interaction that contains a set of

messages that are being sent between service and other

parties involved in interaction. The order and cardinality of

messages participating in certain interaction is dictated by

the message exchange pattern (MEP) that operation is using.

Each operation can have input message, output message, or

both of them, plus an optional fault message. Interface also

contains Fault component: fault event can happen during the

exchange of messages and can disrupt the normal flow of

messages. Binding component describes binding of Interface

component to the concrete message format and

communicational protocol. (i.e. Binding component defines

implementation details needed to access a service). Service

component contains a collection of end points, where all end

points implement one interface. Endpoint component

describes where (on which address) a service can be found.

On the other hand, SAWSDL [7] is a W3C

recommendation that defines mechanisms by which

semantic annotations can be added to WSDL components.

As already mentioned, SAWSDL is an evolutionary

approach built on existing Web standards (WSDL) using

only extensibility elements. It defines extension attributes

that we can apply to elements both in WSDL and in XML

Schema to annotate WSDL interfaces, operations, and their

input and output messages [5]. The SAWSDL extensions

take two forms:

- model references (presented with the extension attribute

modelReference) that can be applied to any WSDL or XML

schema element in order to point to semantic concepts.

SAWSDL is agnostic to the domain model and ontology

representation language.

- schema mappings that specify data transformations

between messages’ XML data structure and the associated

semantic model SAWSDL provides two attributes for

attaching schema mappings: liftingSchemaMapping (lifting

mappings transform XML data from a Web service message

into a semantic model) and loweringSchemaMapping

(lowering mappings transform data from a semantic model

into an XML message). SAWSDL is agnostic to the

mapping (and transformation) language.

As part of our approach described in [8], we presented a

metamodel for WSDL 2.0. In order to support solution

presented in this paper, we had to change our WSDL 2.0

metamodel, so that it reflects annotations SAWSDL

introduces. In Fig. 3, we present a fragment from our

SAWSDL metamodel that shows how we achieved this. We

show here the SAWSDL metamodel in the KM3 format

(KM3 is domain specific language for defining metamodels

with syntax that is similar to the Java syntax [28]).

First, let us point out that we are using an XML Schema

Definition (XSD) metamodel retrieved from Eclipse Model

Development Tools (MDT) subproject [29]. The XSD

metamodel is introduced into our solution through the

package we named Xs. The XSD metamodel offers the

XsAnnotation class as a means of inserting annotations to the

XML elements (both complex and simple ones). So, what

we did is that we first added a new package called

SAWSDL. This package contains just three classes:

ModelReference, LiftingSchemaMapping, and

LoweringSchemaMapping, where each class extends

XSAnnotaion class from the Xs package. These classes

correspond to the annotations SAWSDL introduces. Then,

we added two more abstract classes to the WSDL package:

MRAnnotation and AllAnnotations. The MRAnnotation class

has a reference to a ModelReference class from the

SAWSDL package, and this class is supposed to be extended

by all the WSDL classes that model reference can be applied

to (i.e., Interface, Outfault, Infault, Operation, and Fault

classes). The AllAnnotations class has a reference to a

XsAnnotations class from the Xs package, and this class is

supposed to be extended by all the WSDL classes to which

schema mappings can be applied to (i.e. Output and Input

classes).

III. MODELING APPROACH

As previously stated, the approach we take for Semantic

Web services modeling is based on our approach to

modeling “regular” Web services. In other words, because of

the nature of our approach [8], and thanks to SAWSDL’s

non invasive mechanisms by which semantic annotations

can be added to WSDL components, we could use the same

approach here, of course with some changes applied, for the

Semantic Web services modeling. In the next two, sections

we discuss its use and necessary modifications.

Fig. 3. Fragment from SAWSDL metamodel presented in KM3 format

Our approach to modeling Web services is taken from the

perspective of the potential patterns of the use of services.

That is, we model services from the perspective of MEPs.

We first start from the definition of a business rule that

corresponds to a MEP under study, but without considering

the Web services that might be developed to support that

rule.

We explain our modeling approach on an example of

modeling in-out MEP in URML. The in-out MEP consists of

exactly two messages: when a service receives an input

message, it has to reply with an output message. The

business rule that we use in this example is this: On a

customer request for checking availability of a hotel room

during some period of time, if the specified check-in date is

before the specified check-out date, and if the room is

available, then return to the customer a response containing

the information about availability of the room, or if this is

not the case return a fault message. URML model of this rule

is presented on the Fig. 4.

This business rule is modeled with the two reaction rules,

after which those rules are mapped to Web services (i.e.

SAWSDL descriptions). A triggering event of a reaction rule

(CheckAvailability) maps to the input message of a Web

service operation. The action of the reaction rule, which is

triggered when a condition is true

(CheckAvailabilityResponse), maps to the output message of

the Web service operation. The action of the second reaction

rule (InvalidDataError), triggered on a false condition, maps

to the out-fault message of the Web service operation. To

model condition constructs (checkinDate < checkoutDate)

we use OCL filters [20]. OCL filters are based on a part of

OCL that models logical expressions, which can be later

translated to R2ML logical formulas, as parts of reaction

rules. However, these OCL filters cannot be later translated

to Web service descriptions (WSDL nor SAWSDL), as those

languages cannot support such constructs. But, we can

translate our URML models into rule-based languages (e.g.,

Jess or Drools). This means that for each Web service, we

can generate a complementary rule, which fully regulates

how its attributed service is used.

Fig. 4. URML model

We have developed a tool that supports this approach. The

tool is called Strelka and it is developed as a plug-in for the

Fujaba UML tool. Strelka fully supports the URML

modeling previously described, plus it has the ability to call

the transformations we use (that we describe in the next

section) in order to automate the mappings between Web

services (i.e. SAWSDL) and URML.

The modeling approach presented here can be equally

used for the modeling of Semantic Web services (i.e., the

URML diagram does not have to take any changes). The

reason for this is the fact that we are making an assumption

that domain model and domain ontology are the equivalent.

What this means is that the ontology that we reference from

the SAWSDL document is fully defined by our working

Vocabulary. For example, in Fig. 4, our Vocabulary contains

classes such as Customer, CheckAvailability, and

InvalidDataError where Customer is of type Class,

CheckAvailability is of type MessageType, and

InvalidDataError is of type FaultMessageType). This

equalization of domain model and domain ontology further

leads to the following consequences: i) we do not need to

change neither the URML nor R2ML metamodel, and ii) we

need to use only one extensibility attribute that SAWSDL

offers – modelReference; iii) the use of

liftingSchemaMapping and loweringSchemaMapping is not

necessary, as there are no mismatches between the semantic

model and the XML structures we use within WSDL.

In the next section, we briefly describe model

transformations as the key part of our solution, where we

concentrate on the changes that needed to be employed, in

order to fully support our approach for Semantic Web

service modeling.

IV. MODEL TRANSFORMATIONS

In Fig. 7, we give the tools and transformations that we

have developed to support our modeling framework. In the

central part of the figure we have Strelka - the native

serialization of URML models in Strelka is the R2ML XML

concrete syntax. To support generation of SAWSDL-based

Web services, we need to translate R2ML XML-based

models to WSDL. In this transformation, we also need to

annotate (with modelReference attribute) all the necessary

WSDL elements, so that they reference the ontology that we

generate from R2ML Vocabulary. As shown in Fig. 7, we

have two files as the output of our system: SAWSDL XML

file, and OWL file that presents our ontology. In the next

two figures (Fig. 5 and Fig. 6), we give snippets of these

files.

Fig. 5. SAWSDL snippet we get at the end of our system

It is important to say that, we have developed bidirectional

transformations, i.e. we also support transformation from

WSDL documents to R2ML models, in order to enable

reverse engineering of existing Web services, thus enabling

an extraction of business rules that were already integrated

into to the implementation of Web services.

We have decided to implement transformation from

R2ML to WSDL at the level of metamodels by using the

model transformation language ATL [22]. To support our

approach, we needed to implement a number of

transformations between different languages and their

representations (all of them are bidirectional):

Fig. 6. OWL snippet we get at the end of our system

- URML and R2ML XML concrete syntax (transformation

no. 1 on Fig. 7). This is the only transformation that is not

implemented by using ATL, because Fujaba does not have

explicitly defined metamodel in a metamodeling language

such as MOF. We based this transformation on the use of

JAXB (Java Architecture for XML Binding). JAXB

guarantees that the R2ML XML rule sets comply with the

R2ML XML schema.

- R2ML XML-based concrete syntax and R2ML metamodel

(transformation 2 on Fig. 7). This transformation is

important to bridge between the concrete (XML) and

abstract (MOF) syntax of R2ML. This is done by using ATL

and by leveraging ATL’s XML injector and extractor for

injecting/extracting XML models into/from the MOF-based

representation of rules.

- R2ML metamodel and SAWSDL metamodel

(transformation 3 on Fig. 7). This transformation is the core

of our solution and presents mappings between R2ML and

SAWSDL at the level of their abstract syntaxes.

- SAWSDL XML-based concrete syntax and SAWSDL

metamodel (transformation 4 in Fig. 7). This transformation

is important to bridge concrete (XML) and abstract (MOF)

syntax of SAWSDL. This is also done by using ATL i.e. by

leveraging ATL’s XML injector and extractor.

- R2ML metamodel and ODM (Ontology Definition

Metamodel) [21] (transformation 5 in Fig. 7). This

transformation is necessary in order for us to get an OWL

representation of our Vocabulary. It presents mappings

between R2ML and OWL at the level of their abstract

syntax. And finally the transformation between ODM and

OWL (transformation 6 in Fig. 4) has already been

developed as part of the use case presented in [30].

Due to the size constraints for this paper, we explain these

mappings in the table form – these tables contain very small

excerpts from the mappings between the metamodels

presented in their column headers.

Fig. 7. Transformation chain for bidirectional mapping between URML and SAWSDL

Table 1 presents an excerpt of the mapping between the

R2ML XML schema and R2ML metamodel. Actually, we

did not have to make any change in this transformation

comparing to our original approach, explained in [8],

because the assumption of equality of the domain model and

domain ontology did not require it. Under this assumption,

there was no need to change the R2ML metamodel, because

R2ML vocabulary matches our domain ontology (i.e. they

are equivalent.

Table 2 presents an excerpt of the mapping between the

SAWSDL XML schema and SAWSDL metamodel. Our

original approach contained transformation between the

WSDL XML schema and WSDL metamodel. This

transformation had to be changed, so that it could take into

considerations annotations (more precisely, in our case

modelReference attribute) introduced by the SAWSDL (and

adequately presented in the SAWSDL metamodel whose

fragment is shown in Sect. 3.C)

Table 1. An excerpt of the mapping between the R2ML XML schema and

R2ML metamodel

R2ML XML

schema

XML metamodel R2ML

metamodel

RuleBase Root name=`r2ml:RuleBase` RuleBase

Description: This is a root element. It contains a collection of rules

ReactionRuleSet Element

name=`r2ml:ReactionRuleSet`

ReactionRuleSet

Description: This element contains a collection of reaction rules

ReactionRule Element

name=`r2ml:ReactionRule`

ReactionRule

Description: This element represents a reaction rule

Table 2. An excerpt of the mapping between the SAWSDL XML schema

and SAWSDL metamodel

SAWSDL XML schema XML metamodel SAWSDL metamodel

description Root

name=`description`

Description

Description: This is the root element. It contains these elements: types,

binding, service and interface

interface Element

name=`interface`

Interface

Description: This element contains operation and fault elements

operation Element

name=`operation`

Operation

Description: This element contains in/outfault and in/output elements

Table 3 presents an excerpt of the mapping between the

R2ML metamodel and SAWSDL metamodel. As our

original transformation was between the R2ML metamodel

and WSDL metamodel, this transformation also had some

minor changes in order to reflect modelReference attribute –

i.e. we populate the value of this attribute with the

appropriate URI that references classes from our referring

ontology (or in our case, from R2ML vocabulary).

Finally, in table 4, we present an excerpt of the mapping

between the R2ML metamodel and OWL metamodel

(ODM). There was no need for this transformation in our

original approach, i.e. this is newly developed

transformations, and as such it is not yet completely

finished, rather it is work in progress. R2ML and ODM have

similar ways of presenting vocabulary – they both have

properties defined as independent concepts with their own

domain and range. This is for example, different from the

UML way of defining properties where UML attributes and

association ends are dependent on their enclosing classes.

Table 3. An excerpt of the mapping between the R2ML metamodel and

SAWSDL metamodel

R2ML SAWSDL

RuleBase Description

Description: This is a root element.

Vocabulary ElementType

Description: R2ML Vocabulary is mapped to XML schema language

(which SAWSDL uses for defining message types and vocabularies)

ReactionRuleSet Interface

Description: R2ML ReactionRuleSet maps to the SAWSDL Interface

element (SAWSDL document can have just one Interface element)

MessageEventExpression Input

Description: R2ML MessageEventExpression actually maps to different

SAWSDL elements (Input, Infault, Output and Outfault elements)

Table 4. An excerpt of the mapping between the R2ML metamodel and

ODM metamodel

R2ML ODM

Class OWLClass

Description: R2ML Class concept represents the class element similar to the

notion of the UML Class.

Attribute OWLDatatypeProperty

Description: R2ML Class can have Attribute - Attribute maps to ODM

OWLDatatypeProperty

ReferenceProperty OWLObjectProperty

Description: R2ML Class can have ReferenceProperty – ReferenceProperty

maps to ODM OWLObjectProperty

V. CONCLUSION

In this paper, we have shown one approach to modeling

semantically-enriched Web services - the approach that

leverages the use of both MDE principles and reaction rules.

We have backed up this approach with a working example

that consists, among other things (i.e. creating URML

model), of bidirectional transformations between R2ML

reaction rules and SAWSDL descriptions, allowing us an

extraction of business rules that were already integrated into

the implementation of Web services. The assumption we

made in our approach, is that our domain model (presented

as the URML diagram) and domain ontology (that we

reference in order to identify some piece of semantics) are

the same. As a result, we get a simple solution which is a

good starting point for the more general one in which

domain model and domain ontology are not the same and

where we can leverage all the results obtained here (e.g. all

the transformations can be reused with just a minor

modifications). The approach presented here relies on our

previous work described in [8], so it keeps all the advantages

gained there: By using the MDE principles we have been

able to develop a framework for modeling Web services

from the perspective of how services are used in terms of

message-exchange patterns (MEPs). Our approach enables

developers to focus on the definition of business rules,

which regulate MEPs, instead of focusing on low level Web

service details or on contexts where services are used (i.e.,

workflows).

As rules are closer to the problem domain, rule-based

models of services are much closer to business experts, and

the process of knowledge/requirements elicitation is more

reliable, as well as collaboration between service developers

and business experts. The use of model transformations

allows for transforming platform independent models of

business logic to specific platforms such as Web services.

The process of modeling (semantic) Web services

described in this paper can be used in the wider scope of

integration of business rules and business processes. That is

to say, it is widely acknowledged that business process

management would greatly benefit from integration with

business rule management. The key idea behind this

integration is to extract some parts of a business logic

contained implicitly in business process models into explicit

definitions of business rules. But there is still no established

solution to this integration problem, and the leading business

process modeling language, BPMN [16], does not provide

any explicit support for rules. In [15] the approach to

integration of business rules (R2ML) and business processes

(BPMN) has been proposed, by using the MDE principles.

Authors have created a new rule-based process modeling

language called rBPMN, by integrating metamodels of two

languages (i.e., BPMN and R2ML). It is shown how our

modeling approach can be practically implemented in the

area of business process management. Our plan for the

future is to further experiment in this area, and to find the

best way for its semantically enrichment.

VI. REFERENCES

[1] Web Services Description Language (WSDL) Ver. 2.0 Part 1: Core

Language. W3C Candidate Rec. http://www.w3.org/TR/2007/REC-

wsdl20-20070626.

[2] UDDI Ver. 3.0.2. OASIS, 2004, http://uddi.org/pubs/uddi v3.htm.

[3] SOAP Ver. 1.2 Part 1: Messaging Framework. W3C

Recommendation, http://www.w3.org/TR/soap12-part1/.

[4] Margaria, T., "Service Is in the Eyes of the Beholder," Computer, vol.

40, no. 11, pp. 33-37, Nov., 2007

[5] Kopecky, J., Vitvar, T., Bournez., C., Farrell, J., “SAWSDL: Semantic

Annotations for WSDL and XML Schema”, IEEE Internet

Computing, vol 11, pp. 60-67, Nov-Dec., 2007

[6] Verma, K., Sheth, A., “Semantically Annotating a Web Service”,

IEEE Internet Computing, vol 11, pp. 83-85, March-April, 2007

[7] Semantic Annotations for WSDL and XML Schema, W3C

Recommendation 2007, http://www.w3.org/TR/sawsdl/

[8] Ribaric, M., Gaševic, D., Milanovic, M., Guirca, A., Lukichev, S.,

Wagner, G., "Model-Driven Engineering of Rules for Web Services,"

In Lämmel, R., Saraiva, J., & Visser, J. (Eds.) Post-Proceedings of 2nd

Summer School on Generative and Transformational Techniques,

Springer, 2008, in press.

[9] S. Lukichev and G. Wagner. Visual rules modeling. Proceedings of

the 6th International Conference Perspectives of Systems Informatics,

pp. 467–673, 2006.

[10] S. Lukichev and G.Wagner. UML-based rule modeling with Fujaba.

Proceedings of the 4th International Fujaba Days 2006, pp. 31–35,

2006.

[11] D.C. Schmidt. Model-Driven Engineering. Computer, 39(2):25–31,

2006.

[12] Leymann, F., Roller, D., “Business processes in a Web services

world”, http://www.ibm.com/developerworks/library/ws-bpelwp/

[13] A. Charfi and M. Mezini. Hybrid Web service composition: Business

processes meet business rules. In Proc. of 2nd Int’l Conf. on Service

Oriented Comp., pp. 30–38, 2004.

[14] R. G. Ross. Principles of the Business Rule Approach. Addison-

Wesley, 2003.

[15] Milanovic, M., Gaševic, D., Wagner, G., "Combining Rules and

Activities for Modeling Service-Based Business Processes",

International Workshop on Models and Model-driven Methods for

Enterprise Computing (3M4EC), in conjunction with The Twelfth

IEEE International EDOC Conference (EDOC 2008), Munich,

Germany, 2008. (to be published)

[16] Object Management Group, “Business Process Model and Notation

(BPMN) Specification 2.0”, initial submission,

http://www.omg.org/cgi-bin/doc?bmi/08-02-06, 2008.

[17] RIF Use Cases and Requirements. W3C Working Draft,

http://www.w3.org/TR/rif-ucr

[18] Wagner, G., Giurca, A., Lukichev, S., R2ML: A General Approach for

Marking up Rules, In Dagstuhl Seminar Proc. 05371, 2006

[19] Guirca, A., Lukichev, S., Wagner., G., Modeling Web Services with

URML“, In Proceedings of Workshop Semantics for Business Process

Management, 2006

[20] Object Management Group, Object Constraint Language,OMG

Specification, Version 2.0, formal/06-05-01,

http://www.omg.org/docs/formal/06-05-01.pdf, 2006.

[21] OMG ODM (2005). “Ontology Definition Metamodel,” Third Revised

Submission

[22] Atlas Transformation Language - User Manual, ver. 0.7, ATLAS

group, Nantes

http://www.eclipse.org/gmt/atl/doc/ATL_User_Manual[v0.7].pdf

[23] Nagarajan, M., Verma, K., Sheth, A., Miller, J., Lathem, J., "Semantic

Interoperability of Web Services – Challenges and Experiences", In

Proc. of Int’l Conf. on Web Services, pp. 373–382, 2006.

[24] Sivashanmugam, K., Verma, K., Sheth, A., Miller, J., Adding

Semantics to Web Services Standards, In Proc. of the 1st Int’l Conf.

on Web Services (ICWS'03), Las Vegas, Nevada (June 2003) pp. 395-

401

[25] Sheth, A., Verma, K., Gomadam, K., “Semantics to Energize the Full

Services Spectrum,” Comm. ACM, vol. 49, no. 7, 2006, pp. 55–61.

[26] Verma, K., Sheth, A., "Using SAWSDL for Semantic Service

Interoperability", Tutorial at Semantic Technology Conference, San

Jose, CA, May 21, 2007.

[27] Schmidt, D.C., „Guest Editor’s Introduction: Model-Driven

Engineering“, IEEE Computer, 39(2):25–31, 2006

[28] Jouault, F., Bézivin, J., "KM3: a DSL for Metamodel Specification",

In Proceedings of 8th IFIP International Conference on Formal

Methods for Open Object-Based Distributed Systems, Bologna, Italy,

pp. 171-185, 2006.

[29] The Model Development Tools (MDT) project,

http://www.eclipse.org/xsd/

[30] ATL Use Case - ODM Implementation (Bridging UML and OWL):

http://www.eclipse.org/m2m/atl/usecases/ODMImplementation/

[31] Papazoglou, M. P. and Georgakopoulos, D. 2003. Introduction.

Commun. ACM 46, 10 (Oct. 2003), 24-28. DOI=

http://doi.acm.org/10.1145/944217.944233

http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://uddi.org/pubs/uddi%20v3.htm
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/sawsdl/
http://www.ibm.com/developerworks/library/ws-bpelwp/
http://www.omg.org/cgi-bin/doc?bmi/08-02-06
http://www.w3.org/TR/rif-ucr
http://www.eclipse.org/gmt/atl/doc/ATL_User_Manual%5bv0.7%5d.pdf
http://www.eclipse.org/xsd/
http://www.eclipse.org/m2m/atl/usecases/ODMImplementation/

