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1 Introduction

Fast growth of communication and mobile technologies, constant demands for
new services, and increased number of computer users, are some of the key
reasons of the constantly increasing need for more software. This naturally
requires effective methods for engineering software that will be able to respond
adequately to the needs for which the software was built, and yet to allow for
higher levels of productivity of software engineers. However, today’s state of
the art and practice demonstrates that both perspectives are still suffering
from serious problems. On one hand, the Standish Group published its well-
known Chaos Report in 1994 in which it was noted that only 16% of software
projects were successful, 31% were failures, and some 53% were challenged.
The 2006 report demonstrates a bit better situation where 35% of software
projects were successful, 19% were failures, and 46% were challenged [9]. On
the other hand, productivity methods are struggling with new challenges such
as better methods for software maintenance (e.g., tracing place in the code
when adding new or updating present functionalities to the software [69])
or facilitating collaboration of software teams (e.g., mutual understanding
between different parties collaborating in requirement engineering, especially
in the context of global software development [18]).

While software is a technical category designed to perform specific tasks by
using computer hardware, it is also a social category which nowadays is used
in almost every aspect of human’s life. In fact, software is a knowledge repos-
itory where knowledge is largely related to the application domain, and not
to software as an entity [4]. So, we need to be able to share and interoperate
(application) knowledge stored in software with the knowledge about all rel-
evant aspects surrounding and influencing software (e.g., domain knowledge,
new requirements, policies, and contexts, in which people use and interact
with software) in order to get software to the more advanced levels. This
knowledge sharing and management requires the use of explicit definition of
knowledge, as it is a basic need for machines to be able to interpret knowledge.
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This is why the software engineering community has recognized ontologies as
a promising way to address current software engineering problems [14, 32].

Researchers have so far proposed many different synergies between soft-
ware engineering and ontologies. For example, ontologies are proposed to be
used in requirement engineering [47], software modeling [45], model transfor-
mations [42], software maintenance [43], software comprehension [70], software
methodologies [30], and software community of practice [1]. Moreover, soft-
ware engineering technologies are proposed for modeling and reasoning over
ontologies. These synergies between ontologies and software engineering have
also attracted attention of standardization bodies and have some on-going ac-
tivities. Ontology-Driven Architecture (ODA) is an effort of the W3C’s Soft-
ware Engineering Best Practices Working Group that tries to develop best
practices for using ontologies in software engineering [66]. Probably, the most
important result so far is the Ontology Definition Metamodel (ODM) that is
proposed to be the Object Management Group (OMG)’s standard [54]. The
ODM standard allows for integrating ontology languages (i.e., ontologies) into
the software development process based on model-driven engineering princi-
ples [7]. Although all of these different efforts demonstrate many benefits to
different aspects of software and ontology engineering or give a nice descrip-
tion of the state of the art in the area [14, 32], none of them analyze and
evaluate applications of ontologies in different aspects of software engineering
by following a comprehensive software lifecycle framework.

In this chapter, we start from defining software engineering as an appli-
cation context for ontologies, and proceed to defining a framework that iden-
tifies places in software lifecycle where ontologies can contribute to improve
the current state of software engineering. We consequently have organized the
structure of this chapter to use this framework for analyzing the use of ontolo-
gies in different phases of software life cycle. Note that the chapter does not
discuses Semantic Web rules (see Chapter 5) or upper layers of the Semantic
Web cake, but fully focuses on ontologies in software engineering.

2 Software Engineering

The goal of this section is to define software engineering, describe some typical
software lifecycle phases, artifacts used and produced in them, participants,
their interactions, and relevant domain and application knowledge. Based on
this discussion, we define a unified framework for the use of ontologies in
software engineering to which we are going to refer in the rest of the chapter.

The most commonly used definition of software engineering is the one
given in the IEEE Standard Glossary for Software Engineering [38], where
software engineering is defined as “the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of soft-
ware, that is, the application of engineering to software.” It is obvious that
this definition has a very strong foundation on the lifecycle of software, i.e.
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how it is built (i.e., development); how it is used (i.e., operation); and how
it is updated, and renewed (i.e., maintenance). Therefore, it is natural to
discuss about software engineering by focusing on software lifecycle phases.
While different methodologies (e.g., Rational Unified Process (RUP) or adap-
tive methodologies such as agile development) consider different phases for
software lifecycle, we use the phases of software lifecycle as defined in [61]
given the dominant use of object-oriented paradigm, while the definition of
all stages are based on [38]. In Fig. 1, we give an overview of all software life-
cycle phases with their parallel activities; used and produced artifacts; types
of interactions and collaborations; and participants and their roles. Each of
the software lifecycle phases can be defined as follows [38]:

• Analysis phase determines what has to be done in a software system.
After determining what kind of software is needed to be developed, the
requirements phase is the first and the most important step. In this phase,
the requirements for a software product are defined and documented. This
is usually done in collaboration with end-users and domain experts, where
the critical point is to establish common understanding of the domain
under study. Once requirements are defined, they are formally specified
in the form of a legal document. Typically, this document includes func-
tional requirements, performance requirements, interface requirements, de-
sign requirements, and development standards; to eliminate all ambiguous-
ness, incompleteness, and contradictions. Modeling approaches are recom-
mended at this stage (e.g., RUP recommends using UML use cases and

Fig. 1. Software development lifecycle: Phases, Artifacts, Interaction and Collabo-
ration, and Participants



4 Dragan Gašević, Nima Kaviani, and Milan Milanović

class diagrams), while some researchers recommend using even some more
formal approaches (e.g., Petri nets [39]).

• Design phase defines detailed designs for application domain, architec-
ture, software components, interfaces, and data. Since all the design should
be verified and validated to satisfy requirements, usually this phase regards
the use of modeling (e.g., UML). The more formal designs are defined, the
less potential errors will be, and the more potentials will exist for au-
tomatic software implementation (e.g., code generation). Therefore, the
software engineering community puts a lot of attention to the discipline
called model-driven engineering (MDE) to enable model-driven develop-
ment (MDD) of software products [24]. Moreover, model transformations
(model-to-model; model-to-text; and text-to-model) are the key concepts
of MDD which allow for round trip engineering (i.e., forward and reverse
engineering) of software.

• Implementation phase creates a software product from the design docu-
mentation and models. This phase also debugs and documents the software
product. This phase assumes the use of programming languages to encode
specified designs, and testing techniques (e.g., unit testing) to eliminate
any potential bugs. Besides eliminating software bugs, it is also impor-
tant to be able to check whether implementations are fully valid w.r.t. the
models (aka., model-based testing [3]).

• Integration phase is the process of combining software components (e.g.,
Web services), hardware components, or both, into an overall system. This
phase is usually done in parallel with the implementation phase. Besides
importance of a high-quality and up-to-date documentation, this stage also
requires testing, such as acceptance testing (by end-users) and integration
testing (i.e., checking the integration with other components).

• Maintenance phase is the process of modifying a software system or
component after delivery to correct faults, improve performance or other
attributes, or adapt to a changed environment, i.e., any change after accep-
tance of the software by the client. This phase highly depends on the qual-
ity of documentation in order to trace parts of software to be changed. Of
course, this phase also assumes documenting all changes as well as testing
software for its compliance to the initial and newly-defined requirements.

• Retirement phase is the period of time in the software life cycle during
which support for a software product is stopped. This may happen in cases
where a drastic change in design, implementation, or documentation has
occurred. This phase also has to be well-documented to explain why a
software product is retired.

However, the current software practice suffers from a lack of tractability of
all artifacts and elements produced/used in different stages of the lifecycle
(e.g., requirement documents and source code), that can substantionally affect
software development and especially software maintenance [69]. As already
pointed out, software is a socio-technical category which necessitates keeping
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track of all relevant human-human and human-software interactions (e.g., chat
discussions that may explain why some design decision were made) [1].

It is also very important to mention that every software product strongly
relies on the application-specific domain knowledge, standards, and policies
related to the software system under study. In addition, every software devel-
opment process follows some methodologies4, and it is useful to relate method-
ology tasks and activities with the software artifacts produced/used in differ-
ent lifecycle phases. Moreover, each task in the software development lifecycle
is important to be assigned to a person (e.g., software programmer) that has
competences needed. Very often, such knowledge is not represented explicitly,
and thus it is very hard to establish tractability links between such knowledge
and produced software artifacts and interactions used in all phases of software
lifecycle. Such knowledge can further stimulate social interactions and locate
peers that can help in dealing with some specific software development issues.
In the rest of the chapter, we present how ontologies can assist in establishing
the missing semantic links in the above software lifecycle phases.

3 Analysis

According to the Standish Group report from 1994 5, the main reasons for
software project failures are issues caused by the poor or inappropriate soft-
ware analysis. The three reasons for software success are user involvement,
executive management support, and a clear statement of requirements, while
the main reasons for challenged and failed software projects are the lack of user
input, incomplete requirements and specifications; and changing requirements
and specifications. All these reasons stress the need for mutual understand-
ing between requirement engineers and end-users and the importance of the
preciseness of the requirement specification.

3.1 Ontologies as Requirement Engineering Products

The above arguments motivated researchers to look at ontologies as a solu-
tion to improve the state of the art in this area. Breitman & Leite argue that
ontologies should be sub-products of the requirement engineering phase [10].
It follows the idea of Hendler that on the web we can have many application-
oriented ontologies that should be interconnected to facilitate knowledge shar-
ing between different applications [34]. Thus, their requirement engineering
process has a particular sub-process for ontology construction. This process
is inspired by the layered ontology engineering approach [49], where the main
source for creating ontologies is the language’s extended lexicon. The lexicon
is built by eliciting the important terms from the relevant source documents,

4 Todays methodologies follow incremental and iterative software development.
5 http://www.spinroot.com/spin/Doc/course/Standish Survey.htm
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and mapping the terms to the appropriate constructs (e.g., classes) of the on-
tology language used in the application under study. Looking further to some
other ontology development technologies, we can also find out that require-
ment engineering and ontology engineering are even sharing some common
methodologies. For example, the DOGMA ontology engineering framework
[65] uses a scenario-based approach to engineer ontologies for application do-
mains. The most important thing from both cases is that the ontology is a
product of the analysis phase, which means that all parties involved in this
process should agree upon the ontology developed. This, in fact, should elim-
inate the lack of misunderstanding of the users’ needs and should further
be propagated to the design phase (e.g., by transforming such an ontology
to models - cf. Sec. 4). Another benefit is that all documents (e.g., stories)
that are used for requirement acquisition could be semantically annotated
with the ontologies created from them to represent intelligent content [13].
If such ontologies are further used in the design phase (e.g., models), we can
then have traceability between these two software development stages (i.e.,
analysis and design) and establish mapping relations with other ontologies to
provide traceability with other potentially relevant sources of knowledge.

The use of upper-level ontologies is also well-known in software engineering
when developing domain models that are usually part of the requirement speci-
fication. Typically, an upper-level ontology (e.g., Bunge-Wand-Weber (BWW)
model) is used as a definition of the background theory (or the perspective to
the world) based on which the domain model is built. Current software de-
velopment methodologies (e.g, RUP) suggest UML-based domain models as
the results of the analysis phase. The current experience demonstrates that if
one wants to make such domain models valid w.r.t. the upper level ontology,
then a modeling language should be constrained in order to allow the use of
only those models that are compliant to the upper ontology. For example,
Evermann & Wand [23] constrain the specification of the UML (i.e., UML
metamodel) by using the Object Constraint Language (OCL), so that every
UML model is fully compliant with the BWW model.

3.2 Requirement Engineering Approaches

Requirement engineering phase assumes the use of many different sources,
which are not only end-users and domain experts, but also policies and stan-
dards. Requirement engineering also implies the use of different methodolo-
gies such as goal-driven, viewpoints-oriented, and scenario-based approaches,
or their combinations [47]. None of these approaches usually allow for using
different approaches collaboratively, since they are mainly constrained by the
tools they use. Recognizing this problem, Lee & Gandhi proposed an ontology-
based framework, aka Onto-ActRE, which promotes cohesiveness between the
artifacts generated from different modeling techniques and creates a shared
understanding from multiple dimensions [47]. The central point of this solu-
tion is a Problem Domain Ontology that integrates 1) goal-driven scenario
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composition; 2) requirements domain model; 3) viewpoints hierarchy, and 4)
other domain specific taxonomies. Leveraging PDO represented in OWL and
the Jena Semantic Web framework, they developed the GENeric Object Model
(GenOM) tool that, for example, allows requirement engineers to utilize the
requirements domain model along with the goals from the goal hierarchy and
the associated stakeholders in a viewpoints hierarchy. Although not suggested
by Lee & Gandh, the requirements domain model can be obtained from a
domain ontology developed by some of the approaches discussed earlier.

3.3 Requirement Engineering Collaboration

Collaboration appears to be the crucial activity in successful requirements
engineering, especially in the current global software development landscape.
The main challenges to be addressed are [16]: (i) knowledge acquisition and
sharing; (ii) effective communication and coordination; and (iii) aligning RE
processes and tools. We have already commented on how ontologies can ad-
dress (i), but there is a need to combine it with (ii) to facilitate efficient
collaboration and coordination of involved parties. The use of Wikis appears
to be a promising solution to this task. Wikis demonstrate the use of ontologies
to define the structure (e.g., concepts such as Use Case, and Actor) and types
of documents used in the requirements engineering phase based on the story
telling approach [17]. Software engineering can benefit form semantic Wikis
as frameworks for (application) ontology engineering by using collective intel-
ligence [64]. Collaborative results produced in semantic Wikis can directly be
translated to models used in the design phase (cf. Sec. 4 for details).

Not only are Wikis means of collaboration in requirements engineering, but
stakeholders also communicate by other communication channels and tools
such as chats, discussion forums, etc. [63]. It would definitely be an important
research challenge to leverage ontologies for managing knowledge contained
in all these channels (e.g., semantically annotating discussion messages [67]
to represent contextual knowledge about why and how some decisions were
made). Finally, for a successful collaboration of distributed stakeholders, it is
also important that they fully understand the different cultural, geographical,
and organizational boundaries. For example, a common problem in collabora-
tion could be a misunderstanding of different requirements engineering tools,
methodologies they are based on, and levels of details of the requirement spec-
ification requested [18]. While ontologies like the Problem Domain Ontology
can certainly harmonize different ontology engineering approaches, there are
some open opportunities for applications of ontologies such as to describe
requirement engineering tools and methodologies (and connect them with
general software engineering development methodologies [30]) or to harmo-
nize communication among stakeholders with different cultural and technical
origins.
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3.4 Requirements Verification

Testing of identified and specified requirements is a critical activity of the
analysis phase, as it is very important to make sure that all involved stake-
holders with different bakgrounds and levels of knowledge agree upon the
requirements specification. Probably, the most effective way is to use formal
model-based animations (e.g. UML use-cases and classes) that present defined
requirements. However, as UML does not have formally defined semantics, it
is very hard to run simulations that formally analyze the models defined [26].
Although development of methods for formal analysis of models is set as one
of the main challenges in the area of model-driven engineering [27], there are
already some proven formal languages that have successfully been used for
verification of requirement specifications. For example, Jorgensen & Bossen
suggest the use of Petri nets for defining executable use-cases [39]; demon-
strating potentials of Petri net analysis for requirement engineering.

However, Petri nets are a formalism for modeling processes rather than
for modeling a structure (e.g., domain model) of a system under study. The
question is then how to combine domain ontologies developed in some of
the abovementioned ways and process formalisms such as Petri nets? Brock-
mans et al. proposed a mechanism for semantic annotation of Petri nets by
using concepts from domain ontologies [12]. Taking a similar approach, [28]
demonstrates that ontology alignment techniques can assist in the automatic
business process integration. This example can stimulate some other applica-
tions of ontologies to semantically enrich requirement engineering and even
improve tractability of all artifacts produced in this phase to be used in other
software lifecycle phases. For example, one could trace requirement document
from Petri net models by using ontology concepts annotating Petri net ele-
ments. Moreover, these semantic links between requirement documents and
Petri net models via the domain ontology could further increase the degree
of “intelligence” of content [13]. This ontology annotation of Petri nets can
also serve as an interesting direction for further integration of ontologies and
models to develop mechanisms to semantically annotate models used in the de-
sign phase (e.g., [46] investigates workflow and composition languages). Such
semantically annotated artifacts will further be interlinked with the artifact
of the implementation and integration phases (e.g., Semantic Web services –
Chapter 28).

4 Design

As already mentioned, the design phase assumes a comprehensive definition
of the software system under study. As a result, this phase heavily relies on
the use of modeling principles and best software practices such as software
patterns. Due to the importance of modeling in this phase, in this section,
we first introduce model-driven engineering (MDE) as a software engineering
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discipline that promotes software development fully based on modeling prin-
ciples. Then, we discuss how MDE helps to integrate ontologies into software
design, and finally, we conclude this section by discussing how ontologies can
be applied to improve the use of design patterns.

4.1 Model-Driven Engineering (MDE)

Model Driven Engineering (MDE) is a new software engineering discipline in
which the process heavily relies on the use of models [7]. Models are the central
MDE concepts and are specified by using modeling languages (e.g., UML or
ODM), while modeling languages are defined by metamodels. A metamodel is
a model of a modeling language. That is, a metamodel makes statements about
what can be expressed in the valid models of a certain modeling language [62].
The core idea of MDE is to increase the productivity of software developers by
increasing level of abstraction when developing some software. Once models
have been developed, they can be translated to different platform specific
implementations (e.g., Java or C#). The OMG’s Model Driven Architecture
(MDA) is a possible architecture for MDE [50].

MDA consists of three layers, namely: M1 (model) for defining models of
systems under study; M2 (metamodel) for defining modeling languages (e.g.,
UML and Common Warehouse Metamodel (CWM)); and M3 (metameta-
model) where only one metamodeling language is defined (i.e. MOF) [53].
The relations between different MDA layers can be considered as instance-of
or conformant-to, which means that a model is an instance of a metamodel,
and a metamodel is an instance of a metametamodel. Besides MOF, MDA
also includes the Object Constraint Language (OCL) to define (more formal)
constraints over MOF-defined MDA layers, so that more precise model defi-
nitions can formally be verified. OCL is also defined by a MOF-based meta-
model resided on the M2 level. Another MDE architecture is Eclipse Modeling
Framework (EMF), which is different from MDA just in using Ecore on the
M3 layer instead of MOF (cf. Sec. 4.5).

4.2 MDE and Ontologies

Cranefield was the first to explore the synergy of software modeling languages
and ontologies [15]. He started from the assumption that there are similar-
ities between the standard concepts of UML and those of ontologies (e.g.,
classes, relations, and inheritance). Having this in mind, he proposed the use of
UML for modeling ontologies due to the wide-acceptance of UML by software
engineers and many already-developed UML models, which would facilitate
adoption of ontologies by software practitioners. Moreover, software engineers
can also benefit from the use of ontology reasoning services (e.g., consistency
checking) to reason over UML models. In this way, one can connect software
design and ontology development. This motivated several other researchers
to look into the problem of similarities and differences between ontology and
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software modeling languages (mainly UML). The details about findings could
be found in [29].

The abovementioned activities initiated a standardization process at the
Object Management Group (OMG) to issue a request for proposals for the
Ontology Definition Metamodel (ODM) in 2003. The aim was to define a
MOF-based metamodel for the OWL (cf. Chapter 3) and RDF(S) (cf. Chap-
ter 4) ontology languages (i.e., ODM), corresponding ontology UML profile
(to use standard UML tools for modeling ontologies), and transformations
between ODM and other relevant ontology and modeling languages. These
activities resulted in the OMG’s ODM specification [54] that defines MOF-
based metamodels for Semantic Web ontology languages, RDF(S) and OWL
as well as metamodels of Common Logic, Entity-Relationship models, and
Topic Maps. The ODM specification also specifies model transformations (by
using the OMG’s Query/View/Transformations (QVT) standard transforma-
tion language [55]) of the ODM and RDFS metamodels with the metamodels
of the following languages: UML, Common Logics, Topic Maps, and Entity-
Relationship. IBM’s tool Integrated Ontology Development Toolkit (IODT)
is the most complete implementation of ODM [57].

Note also that application (and domain) ontologies can also be used in
the design of software architectures. Grønmo et al. demonstrated how MDE
principles can be used to model Semantic Web services (i.e., OWL-S) by ex-
tending UML activity diagrams [31]. This approach reminds of the approach
for semantic annotation of Petri nets [12]. This demonstrates the importance
of further exploration of how ontologies can be integrated into custom model-
ing languages (e.g., Business Process Modeling Notation - BPMN). This effort
can have several contributions to software engineering such as (i) improved
tractability of software models when maintaining software and (ii) improved
software integration capacity, especially, in the context of service-oriented ar-
chitectures.

4.3 Software Models and Business Vocabularies

Not always should domain ontologies be defined in the analysis phase, but the
requirements specification can be only in the form of documents written in
natural language. This implies that we should define our domain models (i.e.,
ontologies) in the design phase from scratch. So, for this task it will be useful
to have an automatic or a semi-automatic approach to produce ontologies for
requirement documents (see Chapter 15). Moreover, we should also be able
to update textual requirement documents automatically with the changes of
ontologies.

Semantics of Business Vocabulary and Business Rules (SBVR) is a promis-
ing solution to the above problem [56]. SBVR is the OMG specification that
defines a metamodel for capturing expressions in a controlled natural language
and representing them in formal logic structures. The SBVR metamodel is
compatible with Common Logic. Given that the ODM specification defines
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the mappings between the Common Logics metamodel and the metamod-
els of both OWL and RDF(S), the ODM specification provides a bridge to
transform SBVR to OWL, RDF(S), UML, Topic Maps, Entity-Relationship
models, and Description Logics.

4.4 Ontologies and Model Reasoning

Software modeling tools are usually very intuitive and allow software designers
to use a visual notation of modeling languages (e.g., UML). However, today’s
software modeling tools lack the support for formal validation of software
models, and discovering some potentially hidden implications of such models
(e.g., inconsistencies and redundancies), which may impact the overall quality
of software designs [27]. Trying to address these issues, Berardi et al. explored
the use of description logics to enable reasoning over UML class models [6].
The main finding of their research is that UML class diagrams are EXPTIME-
hard, even under restrictive assumptions including only binary associations,
only minimal multiplicity constraints, and generalizations (between classes
and associations) with disjointness and completeness constraints. They also
demonstrated how reasoning over UML class models can become EXPTIME-
complete by disabling the arbitrary use of first order OCL predicates, but still
allowing disjointness constraints on the generalization hierarchies. A practical
contribution is a reasoner that allows for reasoning over UML class models.
There are similar on-going research activities in the MDE community to pro-
vide formal semantics for UML [27]. The ontology community also considers
the use of some UML features (e.g., composite structures) in the future OWL
extensions (e.g., OWL 1.1) [58].

4.5 Ontologies and Model Transformations

Model transformation plays an important role and represents the central op-
eration for handling models in MDE [7]. Model transformation is the process
of producing one model from another model of the same system [50]. Model
transformations are usually defined between different modeling languages that
are defined by different metamodels, and hence the process of transformation
is usually called metamodel-driven model transformation. The OMG adopted
the MOF2 Query View Transformation (QVT) specification [55] to address
this need. One of the most commonly used QVT implementations is ATLAS
Transformation Language (ATL) [5], which is the official Eclipse recommen-
dation for model-to-model transformations, and yet is an open-source solu-
tion. Based on the previous discussions on the similarities between ontologies
and models, there have been several approaches that propose the use of on-
tology alignment techniques to attack the problem of model transformation.
The ModelCVS system addresses this problem by transforming (i.e., lifting)
metamodels into ontologies (i.e., transforming Ecore to ODM) [42]). Then,
such obtained ontologies are further refactored to represent explicitly some
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hidden concepts that are usually not precisely represented in metamodels,
but should be placed in ontologies. Finally, ontology matching algorithms are
executed over such ontologies (e.g., COMA++), and discovered mapping re-
lations are encoded into the ATL transformations. The ontology-based model
transformation (ontMT) approach in an attempt that semantically annotates
metamodels with the concepts from a reference ontology of a domain [60].
ontMT makes use of such semantic annotations to reason over concepts of the
metamodels being mapped and generates model transformations (i.e., ATL)
from inferred mapping relations.

Both of these applications of ontologies to model transformations have
been recognized as valuable contributions to the MDE area. However, there
are many important research questions that should be solved such as: combi-
nations of both approaches to make the process of model transformation more
effective; applying ontologies and ontology matching at the model (M1) level
of MDA, for example, to improve software refactoring; and applications of
ontology matching to contribute round-trip engineering (i.e., code generation
and reverse engineering) by complementing the efforts for model-to-text and
text-to-model transformations [40].

4.6 Ontologies and Software Patterns

Using the experience form the urban architecture, software engineering adopted
the concept of software patterns as an attempt to describe successful solutions
to common software problems. The pattern, in short, is a thing, which hap-
pens in the world, and the rule which tells us how and when to create it.
A pattern language is a network of multiple patterns, with links between re-
lated patterns. The most known type of software patterns are design patterns
which nowadays are used in almost all applications. Patterns are, in fact,
shared knowledge of software engineering, and represent a way for common
understanding of software designs. Patterns are described in literary forms,
such as sonnets. This works fine if patterns are intended to be understood
by software engineers, but if they need to be interpreted by tools, there is
a need for a formal representation of patterns [20]. For example, the BORE
tool leverages the ontologies to encode the pattern language for usability de-
sign patterns [36]. BORE does not automate user interface design, as for
effective user-interface design, talent and creativity of the software designer
is very importnat. However, the design pattern ontology helps designers im-
prove their knowledge about patterns and share the design experience with
other designers easier. As suggested for using semantic annotations of models
with ontologies, semantic annotations of design patterns and artifacts can also
improve the maintenance, so that one can trace the knowledge on which the
design was based [20].
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5 Implementation and Integration

The design of software products should specify how the system should fi-
nally be implemented and integrated with other software systems, so that
the software product eventually accomplishes the requirements initially set.
This phase usually looks at lower computer-specific details and is done by
using programming languages. Although the goal of MDE is to allow for au-
tomatically generating as much implementation code as possible along with
many promising results, the current state of the art indicates that many im-
plementation details should still be done manually. This section explores the
potentials of using ontologies in the implementation and integration phases.

5.1 Implementation

In this section, we distinguish between three different approaches to the use
of ontologies in software implementation.

First, as already indicated, some approaches claim that ontologies could
be used in the same manner as models in MDE. Thus, we should be able to
generate the implementation of a software system from an ontology, possibly
the domain ontology that we created in the analysis phase and refined in the
design phase. Following this approach, Cranefield created transformations of
UML models to Java code (e.g., classes) besides the RDF(S) ontologies [15],
and thus provided a complementary Java implementation for an RDF(S) on-
tology. However, this approach did not provide mechanisms for preservation of
the semantic definitions in ontologies (e.g., OWL restrictions). RDFReactor is
a more recent approach that allows for mapping RDF(S) ontologies to Java.
Although it does not support OWL, it improves the previous work by elim-
inating some non-safe type usages (e.g., Java.util.List for properties) by the
use of domain specific classes generated from the ontology and leverages the
use of static semantic analysis used by compilers of programming languages.

Second, given the AI origins of ontologies, ontologies can also be used in
the implementation of software systems in a more declarative way, but yet
to use conventional object-oriented programming languages (e.g., Java). HP’s
Jena Semantic Web framework offers a Java API for handling RDF(S) and
OWL ontologies. Examples of alternatives for Jena are the Protégé OWL API
and Protégé-Frames API [45]. In this case, we can say that ontologies are not
used only for code-generation (like it is the case with MDE and approaches
such as [41] and [68]), but ontologies are also a part of the run-time software
behavior. A good aspect of implementations based on generic ontology APIs
is that they are more dynamic in terms of allowing for on-the-fly ontology
changes and updates. However, in these implementations, software developers
can not resolve run-time issues by using static semantic analysis. Such run-
time issues can hardly be handled with standard exception mechanisms of
programming language [45]. In addition, it is not possible to benefit from
widely-adopted techniques for software testing, such as JUnit. This group of
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implementations can also benefit from the ODM specification, as the OWL
and RDF(S) metamodels can also be programmatically managed by using
model handlers (i.e., their APIs) such as EMF and Java Metadata Interface
(JMI, http://java.sun.com/products/jmi/).

Third, ontologies can be used as a part of the implementation logic in soft-
ware systems that are implemented by using rule-based languages (e.g., Jess
or JBoss Rules). This is the most flexible software implementation approach,
as it not only allows for dynamically changing ontologies, but also rules. Then,
an inference engine is responsible for execution of rules. Given that most of
rule languages define rules over vocabularies and ontologies, this implemen-
tation technique can nicely be applied to ontologies [33]. However, rule-based
languages are not the widely adopted implementation approach in software
engineering and this approach is mainly used for implementation of smaller
specialized components with high degree of dynamicity (e.g., e-Negotiations).

Besides the abovementioned approaches, the use of ontology-based seman-
tic annotations can additionally improve software development lifecycle. For
example, Java annotation mechanism can be used to semantically intercon-
nect parts of Java code and ontology conceptualization. Not does this can only
be useful for JavaBeans6 to perform some advanced reasoning (e.g., consis-
tency checking), but it can also produce some benefits for the overall software
maintenance (e.g., license ontologies can be useful to apply different license
policies to different parts of source code). Finally, the potential text mining
and ontology-based analysis of the code can be interesting to provide (semi-
)automatic approaches to verify some implementation requirements and their
designs, similar to the use of ontologies for detection of design errors [37].

5.2 Integration

The most important contribution of ontologies to software integration is se-
mantic Web services. Semantic Web services, as the augmentation of Web
service descriptions through Semantic Web annotations, facilitate the higher
automation of service discovery, composition, invocation, and monitoring on
the Web. In this section, we focus on a relevant topic: semantic middleware.

The concept of middleware is applied to managing heterogeneity of vari-
ous software components and technologies used in a distribute software sys-
tem. However, it is very important to have environments for developing such
middleware-based distributed systems. Application servers are component-
based middleware platforms that provide functionalities for developing dis-
tributed systems which can use the components developed the developers or
third parties. The current management of the functionalities of application
severs is based on the use of administrative tools and XML configuration.
While this brings a lot of flexibility, there are still many complexity manage-
ment issues for developers and administrators. These issues are chiefly cased

6 http://blogs.sun.com/bblfish/entry/java annotations the semantic web
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by the lack of an explicit representation of the data in configuration files, or
having no commitment to any abstract model that can improve the interpre-
tation of data when developing and analyzing distributed systems [51].

Studying the above issues, Oberle [51] identified the typical challenges at
development time as: component dependencies and versioning, licensing, ca-
pability descriptions, service classification and discovery, semantics of param-
eters, and automatic generation of component and service metadata. In addi-
tion, typical run time use-cases, requiring more advanced complexity manage-
ment approaches are: access rights management, error handling, transactional
settings, and secure communication. Trying to provide a more generic solu-
tion that can be independent of a particular application domain as much as
possible, Oberle et al. proposed a stack of the ontologies based on the DOLCE
(Descriptive Ontology for Linguistic and Cognitive Engineering) generic on-
tology and its sub-module for descriptions and situations that define pat-
terns for (re)structuring domain ontologies. At the top, the core ontologies
of components (typical concepts characterizing components in application
servers) and of services (typical concepts characterizing services) are defined
(see http://cos.ontoware.org and Chapter 18). These two ontologies are then
specialized in domain ontologies by adding concepts specific for a domain
of discourse. These ontologies are leveraged in KAON SERVER, a seman-
tic application server that is implemented as an extension of the open-source
JBoss application server. Thanks to the ontological description of components,
KAON SERVER can perform more advanced analysis of the components used
in a distributed system by making use of ontology reasoning and query lan-
guages, and thus helps developers and administrators with more contextual-
ized feedback (e.g., who can access a particular component).

The organization of ontologies on which KAON SERVER is based, indi-
cates why it is important to ground domain ontologies in upper-level ontolo-
gies (e.g., DOLCE) in the early software lifecycle development phases (e.g.,
analysis and design). There are many potential benefits for this approach. For
example, if our requirement domain models are based on upper-level ontolo-
gies, requirement engineers will be able to search for suitable components in
the analysis phase. Moreover, the implementation of such systems can later be
capable of more flexible integrations with software systems. Indeed, a similar
approach for integration of business processes based on the use of Semantic
Web services have already been proposed [22], However, the future research
should define methodologies that can guide the use of generic ontologies used
and refined in all software lifecycle phases (see Chapters 16 and 18 for more
information).

6 Maintenance

Any change ever since the client accepts the software, is related to the mainte-
nance software development lifecycle phase. When developing software, soft-
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ware engineers need a lot of knowledge about application domain, technologies
used, algorithms applied, software testing, and past and new requirements.
However, this knowledge is usually not recorded and for software maintainers
(which are not necessarily the original software developers) it is very hard to
fully understand the system being maintained. It is then not surprising why
software maintainers spend 40-60% of their time just to understand the sys-
tem being maintained [59]. The current software development practice tries
to address this problem by requesting software developers and maintainers to
document as much of this knowledge as possible. However, documenting soft-
ware is usually not enough, as software maintainers need an easy assess to the
knowledge relevant to the given context of software maintenance. Tractability
links between various software artifacts are needed, to make this process more
efficient. This is why some researchers argue that software maintenance is a
knowledge management task where ontologies play a critical role [19].

To enable the support for managing knowledge of software maintenance,
Anquetil et al. developed a comprehensive ontology for software maintenance
consisting of five sub-ontologies [2]: the software system ontology with con-
cepts such as software system, users, and documentation; the computer sci-
ence skills ontology with concepts such as computer science technologies and
modeling languages; the modification process ontology with concepts such as
modification request and maintenance activity; the organizational structure
ontology with concepts such as organizational unit and directive; and the ap-
plication domain ontology that associates domain concepts with tasks to be
performed. Applying Post-Mortem Analysis (a method to elicit knowledge
in software engineering), they developed a methodology that allows for ex-
plicit representation of knowledge of different stages of the ISO/IEC 14764
maintenance process (i.e., after modification analysis, after implementation
of the modification, and at the end of the project) by using their software
maintenance ontology. However, this approach does not consider the problem
of establishing tractability links with the already developed artifacts in the
previous phases. To do so, the knowledge management process requires (semi-
)automatic approaches to capture the knowledge encoded in legacy systems.

Witte et al. address the above problems by developing two ontologies,
namely, the source code ontology (i.e., an ontology of major concepts of object-
oriented programming languages) and documentation ontology (i.e., an ontol-
ogy of different concepts that may appear in documents related to program-
ming, such as programming languages and data structures) [70]. This experi-
ment demonstrated that these two ontologies allow for establishing tractability
links between software documentation (i.e., JavaDoc) and source code. More-
over, such links can help in the validation of, for example, documentation, by
checking whether relations described in the documentation (e.g., between a
class and a method) actually exist, and whether the documentation reflects
the state of the implementation in the source code. This approach allows
for even more advanced software maintenance use cases, including, identifi-
cation of security concerns in source code (e.g., checking whether public and
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non-final attributes can be updated outside of the class they belong to) and
architectural recovery and restructuring (e.g., checking whether documented
architecture such as layered architecture is actually implemented).

Other authors demonstrate that it is possible to perform even more ad-
vanced software analysis by using ontologies [43]. Besides using software on-
tology model (FAMIX-based and language-independent ontology of object-
oriented code), this approach uses a bug ontology (inspired by Bugzilla) and
a version ontology. These ontologies are first populated by parsing a source
code extracted from a CVS. Then, the ontologies are queried by using iS-
PARQL, an extension of SPARQL that adopts the concept of virtual triples.
The three ontologies and iSPARQL can assist software maintainers in use
cases such as: code evolution visualization (e.g., how a class evolved in differ-
ent revisions); detection of code smells (e.g., long parameter list); application
of code metrics (e.g., big classes with many methods and attributes and their
correlation with bug reports); and ontology reasoning (e.g., methods that are
not invoked, aka orphan methods). This project also reports on the scalabil-
ity issues of today’s Semantic Web technologies (e.g., reasoners) which can be
another stimulus for the great interest of software engineering in the future
research on integrating searching and reasoning approaches on the Web [25].

For software maintainers it can also be important to know what designs
are implemented in the maintained source code [20]. An ontology of design
patterns can be used to analyze source code and discover design patterns
implemented. In addition, this ontology can assist in providing common un-
derstanding between software developers and software maintainers.

As we initially indicated, software is a social category, and so is software
maintenance. Thus, it is also important to allow for capturing other relevant
knowledge related to software maintenance (e.g., exchange of experiences on
discussion forums). Capturing such type of knowledge facilitates communica-
tion between developers and helps with locating the developers with the most
suitable skills, experiences, and reputations. The Dhruv system addresses this
problem and facilitates connecting three different types of knowledge, i.e.,
content, interaction, and community. There are certainly a lot of potentials to
experiment with the use of ontologies for social networking (e.g., FOAF) to
build networks of software developers. Additionally, this can also be applied
to analyze the trustworthiness of software based on the level of its developers
reputation. A good example in the line of this research direction is the Baetle
ontology (http://code.google.com/p/baetle/) that combines a bug ontology
with several other ones (e.g., atom, workflow, and description of a project’s
ontologies). In addition, software maintenance can benefit from the use of do-
main ontologies that were built during the software development (as described
in the previous sections) or extracted from already developed artifacts [8].
Moreover, there is a potential to use ontologies to semantically annotate the
logs of software behaviors, which can be useful for software maintenance (e.g.,
to synthesize models of behavior [44] and compare them with models defined
in the analysis and design phases [11]).
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7 Conclusions

To the best of our knowledge, there has been no approach addressing the issues
of the retirement phase. Although retirement usually means the end of the use
of a software product, it could be very important for software developers to be
able to create repositories of retired software, as each retired software system
contains a lot of knowledge encoded in its implementation [48]. Thus, we need
methods to extract knowledge out of retired software systems, especially those
that are implemented using legacy technologies. Some of the ontology-based
approaches to software maintenance [20, 43] could be used as good directions
for (re-)using knowledge from retired software systems. Ontologies could also
play an important role in the on-going effort of the OMG for Architecture-
Driven Modernization (ADM) and their metamodel for Knowledge Discovery
Metamodel (KDM) [52].

To sum up the current state of the use of ontologies, we refer back to
Sec. 2 and analyze the orthogonal dimensions to the software lifecycle phases
(i.e., documenting, testing, artifacts, interaction/collaboration, and partici-
pants). Documentation is probably the most commonly analyzed application
of ontologies with ontologies used in all software lifecycle phases. Domain,
upper-level, and document structure ontologies are chiefly used to improve
documentation. Still, the documentation activity could additionally benefit
from ontologies by developing intelligent tools for software annotation that
will for example have features for checking validity of documentation state-
ments w.r.t. the software artifacts [70]. Ontologies also help to have clear
semantic relations between different software artifacts and documentations
(e.g., models and documents), and thus building software documentations as
intelligent contents [13]. This research also indicates that there is a need for
developing standard ontologies of documentation structure and types.

Using ontologies for software testing is probably the least explored aspect
of software engineering. In fact, we have seen that (upper-level) ontologies
are only used to validate requirements and detect design errors [37]. Given
a lot of attention to model-based software testing, ontologies are definitely a
promising technology (as discussed in Sect. 6) to even outperform MDE-based
approaches (e.g., UML) thanks to their strong formal and reasoning founda-
tion. Therefore, further research topics such as semantic annotation of logs
of software behaviors for intelligent monitoring, semantic annotations of unit
and integration tests, ontology-based reverse engineering, and ontology-based
software metrics can bring many potential benefits to software engineering.

The use of ontologies for various software artifacts is probably one of the
areas that has attracted a lot of attention so far. Domain and upper-level
ontologies, ontologies for documentation, source code, bugs, ontology-based
models, model transformations, requirements, and design patterns, are just
some examples that are used for important software engineering tasks such
as adding more semantics to the artifacts, improving tractability links, con-
sistency checking of models, generating model transformations, and software



Ontologies and Software Engineering 19

metrics. While all these attempts are well-recognized by both the Semantic
Web and software engineering communities, further exploration of semantic
annotation mechanisms of software models and implementation code, inte-
gration of ontologies and metamodeling architectures, and a comprehensive
tractability model of software artifacts, are some of the biggest challenges
concerning the aspects of software knowledge artifacts.

Interaction and collaboration are fundamental requirements for successful
software engineering. The current efforts already demonstrate some interesting
results for some of the software lifecycle phases (e.g., facilitating mutual un-
derstanding of stakeholders and semantic Wikis for requirement acquisition).
However, social aspects of design, implementation, integration, and mainte-
nance phases are almost the dark side of ontologies [35]. Investigating the use
of collaborative tagging and folksonomies to improve collaborative experience
when designing, implementing and integrating; leveraging social networking
ontologies (e.g., FOAF) for annotating software artifacts; and multi-cultural
understanding; are some of the potential applications where ontologies can
improve interaction capturing and facilitate better collaboration in software
engineering [21]. Ontologies can also be a suitable technology for integration of
software development environments and collaborative tools (e.g., adding chats
like GTalk chats in Gmail). In addition, competence ontologies can help locate
software engineers with competencies needed for particular projects, which is
one of the most common issues in today’s software knowledge management,
especially in the domain of global software development [18].

Another important area is to describe software processes and methodolo-
gies. Not only do ontologies of methodologies have potentials to be related
with modeling languages [30], but they can actually be used to semantically
interlink, for example, particular project tasks and activities with all different
artifacts produced/used, participants responsible, and interactions done.

References

1. Anupriya Ankolekar, Katia Sycara, James Herbsleb, Robert Kraut, and Chris
Welty. Supporting Online Problem-solving Communities with the Semantic
Web. In Proc. of the 15th Int’l conf. on WWW, pages 575–584, 2006.
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