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Modelovanje servisno orijentisanih arhitektura korišćenjem 
pravila 

 
Apstrakt: 

 
Ova doktorska disertacija je fokusirana na dizajniranje i implementacjiu jezika za modelovanje 

poslovnih procesa upotrebom pravila za servisno orijentisane arhitekture (SOA). Jezik je baziran na de 

facto standardu za modelovanje poslovnih procesa (tj. BPMN-u) i generalnom jeziku za definisanje 

pravila (R2ML-u). Postojeća rešenja u ovoj oblasti su pokazala da su procesno orijentisani modeli suviše 

nefleksibilna za dinamičku adaptaciju poslovne logike. Rešenja bazirana na pravilima daju alternativu, 

koja nudi veću fleksibilnost zahvaljujući deklarativnoj prirodi pravila i njihovim algoritmima 

rezonovanja. Međutim, modelovanje poslovnih procesa korišćenjem pravila je zamoran proces za 

programere u odnosu na ukupno razumevanja poslovnih procesa. 

 U ovoj disertaciji je predložen hibridni pristup, gde jezik za modelovanje uključuje procesno 

orijentisanu, ali i na pravilima baziranu perspektivu. Jezik (na pravilima bazirani BPMN – rBPMN) se 

koristi za modelovanje različitih tipova kompozicija servisno orijentisanih arhitektura, kao što su 

orkestracije i koreografije. Prethodna istraživanje u domenu modelovanja orkestracija su pokazala da: i) 

dobre prakse za dijagrame toka nisu najbolje pokrivene u postojećim jezicima, ii) jezici za modelovanje 

poslovnih procesa imaju ograničenu podršku za reprezentaciju logičkih izraza i pravila, iii) ograničena je 

podrška za dinamičke promene delova poslovne logike u izvršnim orkestracijama servisa, i iv) postoji 

potreba za metodologijom, koja bi dozvolila sistemsku upotrebu tri ključna aspekta koja doprinose 

modelovanju orkestracija servisa – rečnici, pravila i procesi. Kako bi odgovorili na ove zahteve, u ovom 

radu se prelaže metodologija za sistematsko definisanje koraka za proces razvoja servisno orijentisanih 

arhitektura. 

 Istraživačka zajednica je bila uglavnom fokusirana na problem modelovanja orkestracija servisa 

u domenu kompozicija servisa, dok je modelovanje koreografija zauzimalo manje mesta u tim 

istraživanjima. Sledeći zahtevi u domenu modelovanja koreografija su analizirani u ovoj disertaciji: i) 

modeli koreografija nisu dobro spojeni sa rečnicima modela, ii) ograničena je podrška za razdvajanje 

delova poslovne logike od modela koreografija. Ovo smanje mogućnost dinamičkih promena u 

koreografijama, iii) modeli koreografija sadrže suvišne elemente deljene poslovne logike, što može 

voditi ka nekonzistetnosti implementacije i nekompatibilnom ponašanju. 

 Kako bi evaluirali rBPMN jezik u odnosu na različite vrste kompozicija servisa i kako bi 

uporedili dato rešenje sa postojećim rešenjima, dali smo pregled uzora kod razmene poruke, uzora za 

interakciju servisa i uzora za kontrolu toka kod modela orkestracije, kao i agilnih uzora kako bi 

evaluirali dinamičnost našeg rešenja. Takođe smo pokazali kako se razvijeni jezik može koristiti u 

različitim studijama slučajeva korišćenja za modelovanje realnih poslovnih procesa. 

 Takođe smo razvili softversko okruženje bazirano na Eclipse platformi, pod nazivom rBPMN 

editor, koje uključuje implementaciju rBPMN jezika, kao i grafički editor za definisanje na pravilima 

baziranim poslovnih prosela u rBPMN jeziku. Pored opisa dizajna i implementacije razvijenog 

softverskog rešenja, ova disertacija pruža i komparativnu analizu rBPMN jezika sa drugim jezicima u 

oblasti modelovanja poslovnih procesa.  
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Modeling rule-driven Service Oriented Architectures 
 
Abstract: 
 

This PhD thesis is focused on the design and implementation of a novel rule-based business process 

language for modeling Service Oriented Architectures (SOA). The proposed language is built on a de 

facto standard for process modeling (i.e., BPMN) and a general rule markup language (R2ML). The 

existing solutions to this topic demonstrated that process-oriented models might be too rigid for 

dynamic adaptations of the business logic. Rule-based approaches are considered an alternative, which 

offers more flexibility thanks to the declarative nature of rules and their underlying reasoning 

algorithms. However, modeling a business process through rules is a tedious process for developers in 

terms of the overall business process comprehension. 

 In this thesis, we propose a modeling language that integrates both rule- and process-oriented 

modeling perspectives of a business process. The language (rule-based BPMN – rBPMN) is used to 

model different types of SOA compositions, including orchestrations and choreographies. Regarding 

the orchestrations, the previous research on business process modeling of service orchestrations, 

demonstrated that: i) best practices for workflows are not fully covered in the existing languages; ii) 

business process languages have limited support for representing logical expressions and rules; iii) there 

is a limited support for dynamic changes of parts of business logic in executable service orchestrations; 

and iv) there is a need for a methodology, which allows for systematic use of the three key aspects 

contributing to the modeling of service orchestrations – business vocabularies, rules, and processes. In 

order to address these challenges, in addition to the rBPMN language, in this thesis, we propose a 

methodology for defining a systematic set of steps for the development process of service oriented 

architectures. 

The research community has so far mainly focused on the problem of modeling of service 

orchestrations in the domain of service composition, while modeling of service choreographies has 

attracted less attention. The following identified challenges in choreography modeling are tackled in 

this thesis: i) choreography models are not well-connected with the underlying business vocabulary 

models. ii) there is limited support for decoupling parts of business logic from complete choreography 

models. This reduces dynamic changes of choreographies; iii) choreography models contain redundant 

elements of shared business logic, which might lead to an inconsistent implementation and incompatible 

behavior.  

In order to evaluate the rBPMN language for different service compositions and to compare our 

approach with related solutions, we leverage message exchange patterns, service-interaction patterns for 

choreography models, control flow patterns for orchestration models, and agility patterns for evaluation 

of dynamicity of business processes. In addition, we show how the developed language can be used in 

different case studies to model real world business processes. 

To have a proof of concept, we developed a software environment based on Eclipse, called rBPMN 

Editor, which includes implementation of the rBPMN language and also a graphical editor for defining 

rule-based business processes in the rBPMN language. Along with the description of the design and 

implementation of the developed software environment, the thesis provides a comparative analysis of 

the rBPMN language with other similar languages in the area of modeling business processes.  
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1. Introduction 
 

Service-oriented architecture (SOA) is a software paradigm for building flexible and loosely coupled 

software systems based on services. Services are software entities that can be easily discovered, 

published and described. SOA approach to creation of software sysetms enables assembling 

applications independent of specific platform by discovering and calling services to accomplish certain 

task. The main idea behind SOAs is that “instead of building or buying monolithic software systems, in 

which the business logic is hard-coded, applications should be composed in a flexible way, using well-

defined software services that may be distributed over the Internet” [48]. SOA enables lightweight 

approach to the collaboration among different organizations by exposing their internal operations as 

services. In the context of SOAs, service providers expose their services by using service brokers 

(contains directory of services), and those services can be found by service requesters. Web services 

represent the most-promising architecture for implementation of SOA paradigm by using the Internet as 

communication medium and some well-known protocols, including the Simple Object Access Protocol 

(SOAP) [134] for transmitting data, the Web Services Description Language (WSDL) [136] for 

defining services, and the Business Process Execution Language for Web Services (BPEL4WS) [49] for 

orchestrating services and Web Services Choreography Description Language (WS-CDL) [55] for 

defining services choreographies. Web services are “self-describing, open components that support 

rapid, low-cost composition of distributed applications” [99]. Web services can be composed in entities 

that support automated execution of business processes (called service compositions). A typical 

modeling language for representing these processes is the Business Process Modeling Notation – 

BPMN [88].  

In this context, Model-Driven Engineering [9] [34] paradigm is of great relevance, as service 

compositions can be represented as software models, where such service compositions are used for 

realization of composite applications in service-oriented enterprise computing environments. Since a 

business process can be realized through a composition of services, processes of this kind are also 

called service compositions. However, current solutions to modeling SOA compositions have some 

serious drawbacks [99], such as: i) inability to abstract the business logic at the problem domain level, 

so that changes of the (parts of) business logic do not trigger the change of overall process composition; 

ii) support of the modeling of  complex service compositions where one should be able to define rules 

of interaction between multiple business process end points in a unique way; and iii) increased 

flexibility and adaptivity of business processes realized as SOAs by isolating variable parts from the 

reusable parts of a business process and by combining the reusable parts with business rules that model 

the variables parts.  

On the other hand, we have Business process management which “includes concepts, methods, and 

techniques to support the design, administration, configuration, enactment, and analysis of business 

processes” [146]. Thus, a business process consists of a set of activities that are performed in 

coordination in an organizational and technical environment. These activities jointly realize some 

business goals. Each business process is enacted by a single organization, but it may interact with 

business processes performed by other organizations [146]. Business processes are represented by 

business process models, where following MDE principles, models are expressed with modeling 

languages, which are defined by metamodels that are associated with notations of the modeling 

languages, often of a graphical nature. A variety of modeling languages exists for the specification of 

process models, and they can be classified according to their focal modeling construct, according to 

[151]: i) Activity-centered; processes as a network of tasks or activities; ii) Process object centered; 

processes as the legal sequence of state changes of the process object; and iii) Resource centered; 

process as a network of processing stations that interact with each other. Process languages appear as 

Graph-based languages (e.g. BPMN), Net-based languages (e.g. Petri-nets, flow nets) and Workflow 

Programming Languages (e.g. BPEL). So, SOAs which are usually built with services as loosely-

coupled computing tasks communicating over the Internet/network can be represented with Resource-
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centered languages, such as BPMN [88], which represent today de-facto standard for representing 

business processes.  

Recent research [108] has identified a lack of explicit formalism in the process modeling languages 

for capturing business rules. The key idea is to extract business logic contained implicitly in business 

process models into explicit definitions of business rules. This should enable for improving business 

agility, so that business processes can cope with the dynamic nature of business changes, and to 

accommodate dynamic logic of many different applications. This allows for the specification of 

business knowledge in a way that is understandable by business users, and at the same time 

understandable by technical users and executable by rule engines, and thus, bridging the gap between 

business and technology [30]. The approach which hard codes some business logic within applications 

cannot accommodate rapid and frequent changes of a business process without a heavy burden in terms 

of time and cost. Web services and business rules are complementary technologies that provide a good 

approach to bridge such a gap. When these two approaches are deployed in combination, applications 

gain strengths in ways that enhance business agility. The "loosely-coupled" approach of Web 

services/SOA, together with the "de-coupled" approach of business rules enables applications to better 

represent business logic in "explicit" format that can be more flexible and easily modified and shared 

across many applications. 

 

1.1. Research goals 
 

From this we define research problem for this thesis and that is how to enable synergy between 

business rules language and a business processes languages for modeling SOAs in order to achieve 

agile SOAs (run-time change of a business process). Based on the research problem we define goals of 

this thesis, and that is development of a methodology, language and software development environment 

for modeling SOAs that enable for the synergetic usage of rule and process languages. Also, this 

language and the software development environment, which will support the language, will be used as a 

research instrument of the given research problem, and in the software development environment we 

will evaluate our research goals. Therefore, research objectives of this integration and also this thesis 

are: 

 Defining  a methodology and a modeling language for developing rule-driven (agile) 

business processes and SOAs; 

 Integrating of business rules and vocabularies with business process models used as designs 

of SOAs; 

 Facilitating dynamic changes of a business process execution flow by making rules first-

class citizens in business process modeling due to their declarative rule nature; 

 Extracting service compositions from rule-based business process models to make those 

process models executable; 

 Translating  business rules defined by domain experts into a formal representation suitable to 

be used by service engineers; 

 Deploying rule- and vocabulary enhanced process models onto rule and service composition 

engines; 

 Defining conditions for interaction execution and constraints in those interactions. 

 

In order to achieve the abovementioned goals, we defined a research methodology in this thesis, which 

included the following activities: 

 Reviewing and analyzing the literature about the state-of-the-art in the areas of SOA, business 

rules, and business process modeling in order to identify research gaps and position the 

contribution of this work; 
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 Design and development of a development methodology for defining rule-based business 

processes and SOAs; 

 Design of a modeling language and a software development environment for modeling rule-

based business processes and SOAs; 

 Evaluation of the modeling language with respect to its capability to model common problems 

in the relevant area (i.e., through workflow, message exchange, and service interaction patterns) 

and by using a realistic case study. 

1.2. Contents per chapter 
 

This thesis consists from seven chapters and a literature section. After the Introducion section, we 

given the overview of the MDE concepts and related techgooglenologies (MOF, UML, QVT, ...). In 

addition, we described Eclipse Modeling Framework and Graphical Modeling Framework. We also 

introduced business process languages, as well as the modeling and technological spaces. After that we 

given a description of the existing rule and policy modeling languages, their usage in Service-Oriented 

Architectures and modeling rules and policies, as well as for the development of Service-Oriented 

Architectures by using MDE principles that integrates rules and policies. We gave a review of current 

Service-Oriented Architectures and Web services, and analysis of integration between business 

processes and rules. 

 In the third chapter, we give a proposal for a rBPMN language concrete graphical syntax, which 

includes the integration of certaion BPMN elements (such as gateway) and different types of business 

rules (reaction, production, derivation and integrity rules). This includes a proposal for extensions of 

BPMN for modeling choreographies, with a reference to the common problems in choreography 

modeling in BPMN, as well as integration of PML policies in processes by using the appropriate 

metamodel. Besides the graphical synax we gave a proposal for the rBPMN language metamodel in 

MDE architecture. In addition, we give the integrated methodology for development of secure Service-

Oriented Architectures, by using rBPMN models of business process with integration of rules (R2ML) 

and policies (PML) in order to support different aspects of these architectures. In addition, we gave a 

complete proposal for designing business processes, data and rules. We also showed a support for 

modeling policies in a process of development of Service-Oriented Architectures (service compositions) 

by using modeling and PML language. In proposed methodology we gave detailed steps that should be 

followed during the development of rule-based business processes.  

The fourth chapter provides a detailed evaluation of rBPMN language through modeling of the 

four major types of service composition patterns. We gave a review of the Message Exchange patterns 

(MEP‟s), control flow patterns, interaction patterns and patterns for the agile business processes. 

Through these patterns we showed expressivity of rBPMN language for modeling various parts of 

business processes through integration with rules. All patterns were analyzed based on the possibility of 

their modeling by using rBPMN language. In this chapter we gave mapping between two types of 

process models in rBPMN language, interaction models and interconnection models. 

The fifth chapter describes the case studies for rBPMN language through several scenarios of 

Service-Oriented Architecture usage, i.e., service composition models. However, the possibilites of this 

language are not limited only to the described scenarios, but it is possible to model all of the patterns 

from the chapter five. Specifically, in this chapter we showed orchestration modeling on the example of 

the on-line product order, we also gave an example of choreography modeling in the process of the 

flight request and an example of modeling agile business processes in rBPMN through book buying 

over the Internet. This chapter also show an implementation of the application for modeling rBPMN-

based processes, called rBPMN editor. 

 The sixth chapter gives overall description of rBPMN language evaluation based on patterns 

given in the chapter five. In this chapter we gave a comparative analysies of existing languages for 

interaction modeling patterns, control flow patterns and agility patterns, through the analysis to improve 
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modeling of these patterns by using the rBPMN language. We also gave a review of modeling various 

aspects in rBPMN, constraints in modeling by using standard BPMN, as well as possibiliteis for 

modeing these patterns by using rules. 

The last chapter gives a critical review of the results achieved during the research described in 

this thesis. It discusses in detail the scientific, techical and practical contributions achieved in this study. 

After that, we gave an analysis of possibilities of practical application of the results of this study. In the 

end, we gave a plan for possible future research. 
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2. Literature Review 
 

This chapter surveys the state of the art in the relevant areas and introduces background knowledge that 

is important for understanding the concepts described in the rest of this thesis. In addition, this chapter 

describes business process modeling, rule languages, and the principles of model Driven Engineering. 

 

2.1. Model Driven Engineering  
 

Model Driven Engineering is not Model Driven Architecture [34]. MDA is an OMG standard and is 

a specific version of the MDE approach. Favre defines MDE as an open and integrative approach to 

software development which involves many technological spaces (TS) [66] in a uniform way, and 

MDA is only one instance of MDE implemented in a series of technologies defined by the OMG (MOF, 

UML, XMI).  

MDA introduces a set of basic concepts, such as model, meta-model, modeling language and 

transformation, and recommends categorization of all models to platform-independent models (PIMs) 

and platform-specific models (PSMs). However, MDA is not a software development process.  

A technological space is defined as a working context with a set of associated concepts, body of 

knowledge, tools, required skills, and possibilities [66]. It is often associated with a given user 

community with shared expertise, educational support, common literature and even workshop and 

conference meetings. Examples of technological spaces are MDA and MOF, but also Grammarware 

[58] and BNF, Documentware and XML, Dataware and SQL, Modelware and UML, etc. 

 An important aspect of MDE is that it bridges different technological spaces and integrates 

knowledge from different research communities. In every space, model, meta-model and transformation 

concepts appear at various levels of abstraction and in a way can conform to certain concepts in another 

technical space. For example, what is called a meta-model in Modelware, conforms to something that is 

called a schema in Documentware, or grammar in Grammarware, etc. In [57], MDE is defined starting 

from MDA by adding assignment in a process of software development and a space for model 

organization. Two illustrative examples of the MDE process can be found in [1] and [10]. 

 

2.1.1. Definitions of model and modeling 
 

The origin of the word model can be traced to the Latin modulus, which means a small measure. 

A definition of model from [123] says that: "a model is a representation of a concept. The 

representation is purposeful: the model purpose is used to abstract from the reality the irrelevant 

details". Miller and Mukerji state that "A model of a system is a description or specification of that 

system and its environment for some purpose. A model is often presented as a combination of drawings 

and text. The text may be in a modeling language or in a natural language" [85].  

 Computer science uses models in several phases of software development. MDA and MDE rely 

on modeling and models as their basic concepts. However, there is no single definition of model that is 

widely accepted in all computer science. Seidewitz defines model as “a set of statements about a system 

under study” [121], and [68] defines model as an "abstraction of (real or language-based) system 

allowing predictions or inferences to be made". There are a number of other definitions, presented in 

[67]. This thesis uses the following definition of model: "A model represents a part of the reality called 

the object system, and is expressed in a modeling language. A model provides knowledge for a certain 

purpose that can be interpreted in terms of the object system" [67].  

 Models usually serve as specifications in traditional engineering disciplines. When software is 

constructed, models can be used as specifications as well. A UML model can be used for describing an 

existing software system (its structure and operations).  

Model interpretation means mapping model elements to the elements of the object system 

(system under study), so that a specific value of each model expression is obtained in the object system 



Milan Milanović 

 

 

6 

 

which is under study (with a certain level of accuracy). Thus, a model interpretation gives a model a 

meaning associated with the object system.  

Modeling languages enable to write expressions with elements in models of classes systems 

under study. A working software system can be based on a model that represents a certain part of 

reality, while the software itself can be regarded as a model. 

 

2.1.2. Modeling principles 
 

In the world of software engineering, modeling has a rich tradition that reaches early days of 

programming. More recent efforts are focused on modeling languages and tools that permit users to 

express the system parameters to software architects and programmers, in a way that can be uniquely 

mapped to a concrete programming language and then compiled for a specific operating system. UML 

[96] is currently the most widely accepted language for visual specification of models, which is adopted 

as the de facto industry standard for software modeling and standardized by the Object Management 

Group (OMG). UML enables development teams to describe important characteristics of systems in 

appropriate models. Transformations between these models are usually accomplished manually, 

although there are tools that can do automatic model transformation [81]. 

A model is used for an indirect study of reality (i.e., of an object system) [67]. Various reasons 

may cause this indirectness. The object system may be inaccessible, or its direct study is too expensive, 

or even the object system may not exist yet. In all such cases, the model plays the role of a specification 

of the object system. Regardless of the reasons for indirectness, the model must be a valid 

representation of the object system. The knowledge acquired from the model must hold for the object 

system. Often, this knowledge is not exact but only approximates the reality, with an acceptable degree 

of inaccuracy. Furthermore, the knowledge acquired from the model is initially expressed in terms of 

model elements. This knowledge must be interpreted and converted to knowledge in terms of the object 

system. The relation between a model and an object system is bi-directional and two separate relations 

may be considered, as Figure 1 shows. This figure is called the DDI account (DDI – Denotation, 

Demonstration, Interpretation), and was first introduced in [47]. 

 

 
Figure 1. Relationships between an object system and its model [47] 

The object system is denoted (represented) in a model. This denotation must preserve some 

characteristics of the object system to allow acquiring knowledge about it through the model. The 

model is used to obtain claims about the model elements. This process is known as demonstration. It 

happens only in the context of the model. Finally, the obtained results are mapped to the object system. 

This mapping is called interpretation. The knowledge obtained from the model must be verifiable 

against the object system. If the results obtained from the model do not meet the empirical evidence 

obtained from the reality, then the model is invalid with respect to the object system. 

Literature usually depicts only one relation between a model and its object system. Various names 

for the relation are used: ModelOf, RepresentationOf, RepresentedIn, ModeledBy, etc. ModelOf relation 

will be used in the remaining part of the thesis, because it accumulates two other relations: Denotation 

and Interpretation. 

 

2.1.3. Meta-models and meta-modeling 
 

As the name suggests, meta-modeling is a modeling activity. Similarly, the product of meta-
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modeling, called a meta-model, is a model. If an entity is a model, we have to be able to clearly identify 

its object system. A meta-model is a model of the conceptual foundation of a language, consisting of a 

set of basic concepts, and a set of rules determining the set of possible models denotable in that 

language [33]. Therefore, a meta-model describes what models in that language can express. Based on 

this, we can conclude that a meta-model is a model of models expressed in a given modeling language 

[121]. Since a meta-model itself is a model, it is also represented in some modeling language. One 

modeling language can have more than one meta-model, each one represented in a different modeling 

language. Of special interest is the case when the meta-model of a modeling language uses the same 

modeling language. In that case, expressions in the meta-model are represented in the same language 

that describes the meta-model. This meta-model is called reflexive meta-model. Minimally reflexive 

meta-model uses a minimum number of modeling language elements (for that meta-model purpose). 

Since this meta-model is defined as reflexive, there is no need for upper levels, because it defines itself 

with its own concepts. 

Generally, there is a modelOf relation between a meta-model and its object system; it is a 

modeling language. An instanceOf relation between a meta-model and a model often replaces it. 

Indeed, they coincide between the same entities but are different in nature. The grammar of some 

programming language possesses characteristics of all words (and sentences) which that language can 

contain. So, we can take a language grammar as a model of that language (an example of such a 

grammar is the Extended Backus-Naur Form, EBNF). In the case of a modeling language, the model of 

this language is its meta-model. The relation between a model written in some language and its meta-

model is called conformantTo [35]. This relation is defined as a composition of two relations: 

elementOf, denoting the membership of a model to a language, and representationOf, denoting the 

relation between an object system and its model. An example of a meta-model, a model, and an 

instanceOf relation is shown in Figure 2. 

 
Figure 2. Example of meta-models, models and instanceOf relations [67] 

An important difference between the two relations is observed when the language-dependent nature of 

instanceOf is considered. Let us assume that we define another meta-model of the Java language 

expressed in UML (see Figure 2). The UML meta-model may contain a class called Method. The 

knowledge we obtain is that there is a set of methods in every Java program that has a certain structure. 

We must be able to identify methods in the source program and to recognize their structure according to 

the definition of the Method class. It is the consequence of the ModelOf relation that exists between the 

Java meta-model and a Java program. However, we cannot consider the Java program as an instance of 

the UML model in the same way as we did it for the Java grammar. An instance of the UML model is 

defined according to the semantics of UML, and is a set of objects. This instance is a representation of 

the Java program and is a different entity. The UML model of Java is also a model of the Java program 

represented in UML. In addition, there is an instanceOf relation between these entities governed by the 

UML semantics. Much like the relation between a source program and its grammar, this instanceOf 

relation helps us interpret the knowledge from the UML model in terms of the Java program represented 
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in UML. These two instanceOf relations are different. The first one is defined for the parsing process. 

The second one relies on the UML semantics. There is no direct language-specific instanceOf relation 

between a source program in Java and its UML model. However, the latter is a model of the former, 

although we cannot trace the knowledge from the model to the object system via an instanceOf relation. 

 In summary, we can say that instanceOf relation exists between a class and its members and 

supports the interpretation of the knowledge obtained from the class definition in terms of class 

members. In that case, we also have a ModelOf relation between the class definition and class members. 

 

2.1.4. Meta-modeling architecture 
 

A meta-modeling activity can be applied to specify a modeling hierarchy that assumes a multi-

level organization, called meta-modeling architecture. Figure 3 shows an example of this architecture. 

 

 
Figure 3. Meta-modeling architecture [67] 

The ConformsTo relation means that a model is constrained by the rules defined in its meta-model. At 

the bottom level of this architecture, we have models expressed in various modeling languages. This 

level is called the model level. An example model in this level is ModelL written in a modeling language 

L. We can build a model of L (that is, a meta-model) LModelML expressed in another language, called 

Meta-language (ML). Models of the languages used in the model level form the second level in the 

stack. It is called the meta-model level. There is a ModelOf relation between the meta-model of a 

language and models expressed in that language. We can apply the same approach to the models at the 

meta-model level. The models of the languages that express meta-models form the third level, called the 

meta-metamodel level. At the third level of the meta-modeling architecture shown in Figure 3, the 

model MLModel is expressed in the ML language itself. In this way, the top level contains a self-

reflective model. It is expressed in the language that is modeled by that model. The intuition behind this 

is the following. At the meta-model level, we have models of modeling languages expressed in ML. 

However, ML is a modeling language itself, and therefore it should be possible to apply ML itself to 

express its model. 

 Examples of technologies that rely on meta-modeling architecture are Meta Object Facility 

(MOF), section 2.1.5.1, and Eclipse Modeling Framework (EMF), section 2.1.5.5. 
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 An example of the relation between a model and its meta-model in Figure 4 that represents the 

meta relations between a Petri Net model and a simplified Petri Net meta-model, represented in UML. 

Meta relation, associates each element of a model with the meta-model element it instantiates. 

 

 
Figure 4. Meta relations between Petri Net model and meta-model [4] [36] 

As any other model, a Petri Net model network is composed of a certain number of different elements. 

In the context of Petri nets, these elements conform to places, transitions and arcs, and they constitute a 

model. These different elements, together with the way they are connected, conform to the Petri Net 
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meta-model. In the same way, each model conforms to its meta-model. This relation associates each 

model element with a meta-model element that it instantinates. In addition, the meta-model itself can 

conform to some meta-metamodel (as it is shown in Figure 3, MLModelML). 

 

2.1.5. Model Driven Architecture 
 

The Model Driven Architecture (MDA) defines an approach to specifying Information 

Technology (IT) systems and that separates the specification of functionality from the specification of 

the implementation of that functionality on a specific technology platform [85]. The MDA approach 

and the standards that it supports enable for a model that determines some system functionality to be 

realized on multiple platforms through additional standards for mapping. The MDA is specified by the 

OMG consortium
1
 in a series of standards: Unified Modeling Language (UML), Meta-Object Facility 

(MOF), Common Warehouse Metamodel (CWM), etc. An illustration of the MDA idea is shown in 

Figure 5. 

 
Figure 5. Model Driven Architecture (OMG) 

Model is the most basic element of the MDA. There are several definitions of the term "model" (see 

section 2.1.1), and the most general one is that a model is a simplified view of reality [122]. Each model 

itself is defined for some domain, and then it is transformed to models that can be executed on a specific 

platform. A basic assumption of MDA is that a unique model underlies each information system. Such a 

model does not depend on a potential implementation platform, on which the corresponding application 

can be run. In other words, the system requirements can be specified as a Computation Independent 

Model (CIM) [85]. The model defined at this level is sometimes also called the domain model or the 

business model. It does not depend on how the system is implemented. In software engineering, a 

domain model is specified by the domain experts. Platform Independent Model (PIM) can be also used 

to describe a system. It is lower-level and more specific than CIM in terms of being a computation-

related model, but it does not include characteristics of specific computer platforms. To get a model that 

takes into account some target platform specifics, i.e., a Platform Specific Model (PSM), we need to 

define certain transformations that transform the corresponding PIM to the desired PSM. Each PSM 

includes information about some software implementation details (such as the programming language 

and operating system) and the hardware platform. Code generation is done by additional translation 

from the PSM into a certain programming language. 

The MDA is based on four-layer metamodeling architecture shown in. The standards supporting the 

four-layer MDA architecture are: 

 Meta-Object Facility (MOF); 

 Unified Modeling Language (UML); 
                                                   
1 The Object Management Group, http://www.omg.org/. 
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 XML Metadata Interchange (XMI). 

 
Figure 6. The four-layer Model Driven Architecture and its orthogonal instanceOf 

relations: linguistic and ontological [37] 

On top of this architecture, at the M3 level, is a reflexive meta-metamodel, which is called 

MOF. It is an abstract self-defined language and a framework for specifying, constructing, and 

managing technologically independent meta-models. It is a basis for defining any modeling language, 

such as UML or MOF itself. MOF also defines a backbone for the implementation of a metadata (i.e., 

model) repository described by meta-models. The rationale for having these four levels with one 

common meta-metamodel is to enable both the use and generic managing of many models and meta-

models, and to support their extensibility and integration. 

All meta-models, standard and custom (user-defined), that are defined in MOF are placed at the 

M2 level. One of these meta-models is UML, which is a language for specifying, visualizing, and 

documenting software systems. The basic UML concepts (e.g. Class, Association, etc) can be extended 

in UML profiles in order to adapt UML for specific needs. Models of the real world, which are 

represented by concepts of a meta-model from the M2 level, are at the M1 level of the MDA four-level 

architecture. The bottom layer is the instance layer (M0). At the M0 level are things from the real world 

that are modeled at the M1 level. For example, the MOF Class concept (from the M3 level) can be used 

for defining the UML Class concept (M2), which further defines the Student concept (M1). The Student 

concept is an abstraction of a real thing student.  

One can ask the question: what layer contains abstractions of a certain model? If we consider 

classes, their instances in UML are objects. However, objects are defined at the M2 level in the UML 

meta-model, which means that their instances are located in the M1 layer. Since even objects 

themselves model concrete (singular) real-world things, this explanation can be considered true. In [5] it 

is said that there are two types of instantiation in meta-modeling: linguistic and ontological. Linguistic 

instantiation is interpreted in the MDA in an ordinary way - it means that a UML class is an instance of 

the meta-class from the UML meta-model. However, one class in some domain has instances that are 

objects. The relation between objects and class is an ontological instantiation relation. This kind of 

instantiation connects abstractions located at the same linguistic layer. According to this interpretation, 

at the M0 layer are things from real world (instances) and abstract concepts about thing groups 
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(classes). UML 2.0 and MOF 2.0 emphasize the linguistic dimension. Ontological levels exist at the M1 

level, but the meta-model border does not explicitly separate them. This is based on an altered 

perception of the MDA four-layer architecture, as originally class instances have been located in the M0 

layer. 

XML Metadata Interchange (XMI) is the standard that defines mappings of MDA-based meta-

metamodels, meta-models, and models onto XML documents and XML Schemas [93]. Since XML is 

widely supported by many software tools, it empowers XMI to enable better exchange of meta-

metamodels, models, and models (see section 2.1.5.3). 

2.1.5.1. Meta-Object Facility (MOF) 

 

Meta-Object Facility (MOF) [92] in its current version (2.0) represents an adaptation of the 

UML core. MOF is a minimal set of concepts that can be used to define other modeling languages. It is 

similar (but not identical) to the part of UML used in structural modeling. In the latest version of MOF 

(2.0), concepts, as well as UML Superstructure concepts [96], are derived from the concepts defined in 

the UML Infrastructure standard [96]. 

Figure 7 shows meta-models that depend on the UML core package. UML Core package defines 

the basic concepts that are used in modeling (e.g. Elements, Relationships, and Classifiers). In MOF 

2.0, there are two meta-metamodels: 

 Essential MOF (EMOF) - represents a basic package that has a minimal number of elements for 

modeling (e.g., Class, Property, and Operation). 

 Complete MOF (CMOF) - more complex, includes EMOF, but also enables a higher 

expressivity, with concepts such as Link, Argument, Extent, and Factory. 

 

 
Figure 7. Core package as the common kernel [37] 

The main four modeling concepts in MOF are: 

 Class - models MOF meta-objects, concepts which are entities in meta-models (e.g., UML 

Class, Attribute and Association); 

 Association - models binary relationships (e.g., UML and MOF superclass); 

 Package - modularizes other concepts, i.e. groups similar concepts; 

 DataType - models primitive types (e.g., String and Integer). 

 

In the root of the MOF hierarchy is the Element concept. It classifies elementary, atomic 

model elements. All other concepts in MOF inherit from this concept. 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

13 

 

2.1.5.2. Unified Modeling Language (UML) 

 

Unified Modeling Language (UML) is a language for specifying, visualizing, and documenting 

software systems, as well as for modeling business and other non-software systems [96]. UML enables 

diagram construction, which models a system by describing conceptual things (e.g., a business process) 

and concrete things (e.g., software components). UML is not limited only to software engineering 

domain; it can be used in other areas, such as: banking, health care, defense, etc. UML is often 

identified as a graphical notation, which was true for its initial versions. Recently, UML is recognized 

more like a language independent from a graphical notation rather than a graphical notation itself.  

The basic building block of UML is a diagram. There are several types of diagrams for specific 

purposes (e.g., time diagrams) and a few for generic use (e.g., class diagrams). UML version 2.0 defines 

the following types of diagrams: 

 use case diagram; 

 class diagram; 

 behavior diagrams: 

o activity diagram; 

o statechart diagram; 

 interaction diagrams: 

o sequence diagram; 

o collaboration diagram; 

 implementation diagram; 

o component diagram; 

o deployment diagram. 

 

When UML is applied to software, it represents a bridge between the original idea for some 

software and its implementation [104]. UML also provides a possibility for collecting specific 

requirements for some specific system. 

UML as a graphical notation is not a software process; it is designed for use in a process of 

software development and it possesses all characteristics that enable it to be a part of a software 

development process. Since main UML diagram concepts are defined in the Superstructure package of 

the UML specification that includes basic concepts of the UML core [96], it can be said that MOF and 

UML are very similar. 

2.1.5.2.1. UML Profiles 

 

UML Profiles combine concept stereotypes, tagged values, and constraints in order to define a 

precise UML dialect for a specific purpose. This means that it is possible to create new types of 

elements for modeling by extending existing elements. When new elements are created, it is possible to 

add them to existing UML tools. With profiles, classes can be extended with stereotypes that represent 

predefined classes with certain methods and attributes. For example, Figure 8 shows one such a 

stereotype - EJBEntityBean. 

A UML Profile definition in the context of the MDA four-layer meta-modeling architecture 

means extending UML at the meta-model layer (M2). Tagged values are defined as stereotype attributes 

(in Figure 8 tagged values of EJBEntityBean are IsReadOnly, DataSource, etc.). It is possible to 

define constraints that additionally refine the semantics of the modeling element they are attached to. 

They can be attached to each stereotype using OCL (Object Constraint Language) or the English 

language (i.e. natural language) comments, in order to precisely define the stereotype‟s semantics. 
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Figure 8. An example UML Profile for Enterprise applications in Java 

So far, many important UML Profiles have been developed. Some UML Profiles are adopted by OMG, 

such as Enterprise Application Integration [132] and UML Profile for MOF [133]. In addition to these 

formal specifications, there are several well-known UML Profiles widely accepted by software 

engineers, such as UML Profile for building Web application developed by Jim Conallen [19]. 

2.1.5.3. XML Metadata Interchange (XMI) 

 

XML Metadata Interchange (XMI) is an XML-based standard for sharing meta-data in the MDA 

[93]. XMI is defined by XML, using two XML Schemas:  

 XML Schema for MOF meta-models; 

 XML Schema for UML models. 

 

The first one defines the syntax for sharing both MOF-based meta-models and the MOF 

definition itself. Since UML is a modeling language that developers use for describing various models, 

it is obvious that there is a need for an XML Schema for exchanging UML models. In fact, there is a 

standardized one called the UML XMI Schema. The UML tools such as IBM/Rational Rose, Poseidon 

for UML, Together, etc. support it, but some researchers report that we always loose some information 

when sharing UML models between two UML tools [126]. OMG has released several versions of the 

XMI standard: 1.0, 1.1, 1.2 and 2.0, and the latest version is 2.1. 

Figure 9 shows the relationship between UML models and XMI files. 

 

 
Figure 9. Relationship between UML, XML Schema and XMI 

Since there is a set of rules for mapping UML and MOF models to XML Schema, it is possible 

to create XML Schema for every UML model. Objects as instances of such a model can be 

interchanged conforming to these schemas. An XML Schema can be created for any MOF-based meta-

model. 

An example of an XMI file (in version 1.2) is shown in Figure 10. 
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<XMI xmi.version = '1.2' xmlns:Model = 'org.omg.xmi.namespace.Model'> 

 <XMI.content> 

   <Model:Package xmi.id = 'a1' name = 'OCL' annotation = '' isRoot = 'false' 

     isLeaf = 'false' isAbstract = 'false' visibility = 'public_vis'> 

     <Model:Namespace.contents> 

       <Model:Association xmi.id = 'a2'  

         name = 'A_Operation_parameters_Parameter_operation' 

         annotation = '' isRoot = 'true' isLeaf = 'true' isAbstract = 'false'  

         isDerived = 'false'> 

         <Model:Namespace.contents> 

           <Model:AssociationEnd xmi.id = 'a3' name = 'parameters' annotation = '' 

             isNavigable = 'true' aggregation = 'none' isChangeable = 'true'> 

             <Model:AssociationEnd.multiplicity> 

               <XMI.field>0</XMI.field> 

               <XMI.field>-1</XMI.field> 

               <XMI.field>true</XMI.field> 

               <XMI.field>true</XMI.field> 

             </Model:AssociationEnd.multiplicity>  

   <!--...--> 

</Model:AssociationEnd> 

<!--...--> 

         </Model:Namespace.contents> 

        <!--...--> 

       </Model:Association> 

      </Model:Namespace.contents> 

    </Model:Package> 

 </XMI.content> 

</XMI> 
 

Figure 10. An excerpt from the MOF XMI document representing the OCL meta-model 

2.1.5.4. Object Constraint Language (OCL) 

 

Object Constraint Language 2.0 (OCL) as an addition to the UML 2.0 specification. It provides 

a way for expressing constraints and logic in models. OCL represents a language for defining integrity 

rules. It is not new in UML 2.0; OCL was first introduced in UML 1.4. However, from UML version 

2.0 it is formalized by using MOF 2.0 and UML 2.0, which is defined in the UML OCL2 specification 

[94]. OCL is just what its name says: a language. It has its syntax and semantics defined by the UML 

language, and it has keywords. By its design, OCL represents just a query language, and it cannot 

change a model in any way [104]. 

 OCL can be used for expressing: different pre- and post-conditions, invariants (constraints that 

always must be true), constraint conditions, and results of model executing. It can be used anywhere in 

UML, and it is usually associated to a class by using a comment (annotation). When an OCL expression 

is evaluated, the result is temporary. This means that the associated class, i.e., its concrete instances 

(objects), cannot change its condition during the expression evaluation. 

 OCL has four basic data types: Boolean, Integer, Real and String. Each OCL 

expression must have a context. The context can often be identified by where the expression is written. 

For example, a constraint can be attached to an element by using a comment. The context of a class 

instance can be referred to by using the keyword self. For example, if we have a constraint on the 

class Student that says: "a student's average grade (attribute average of type Real), must always be 

greater than 5.0", an OCL expression can be attached to the class Student by using a comment and by 

referring to the average in this way: self.average > 5.0. 

 OCL also includes constraints on methods and attributes, as well as different types of conditions, 

and possesses a possibility (methods) for manipulating data collections. 
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2.1.5.5. Eclipse Modeling Framework (EMF) 

 

Eclipse Modeling Framework (EMF) is a conceptual modeling framework for Eclipse [124]. 

Eclipse is an open-source project lead by a consortium of companies, IBM being among them, with the 

goal to provide a highly integrative tool platform. Its current version is 2.6.1 (September 2010). Eclipse 

includes a core and generic environment for tool integration and a Java environment for development 

that is built by using that core. Other projects use the basic core to support different types of tools and 

development environments. The projects in Eclipse are implemented in Java and can be run on most 

operating systems. 

The Central part of the EMF-based modeling is a model, which includes a set of elements 

defined by UML and its standard notation. It is a UML class diagram in the first place. In the EMF, a 

model is not that general and high-level as it is usually assumed.  

The EMF does not require a complete, distinct methodology or some sophisticated tools for 

modeling. Eclipse Java Development tools are the only tools that are really needed. EMF connects 

modeling concepts directly with their implementations, thus bringing Eclipse and Java programmers 

closer, which results in modeling possibilities that are easy to learn. 

2.1.5.5.1. Basic concepts of the Eclipse Modeling Framework 

 

EMF is a Java-based environment for development of tools and other applications based on a 

structured model. It enables for developing a complete model for an application by using UML 

diagrams. This model can be used only for documentation, or it can be used as input for generating a 

part of an application or the complete application. This class of modeling usually requires expensive 

tools for object-oriented analysis and design. EMF is often used as a model handler, by model 

transformation tools. An important characteristic of the EMF is that it offers a "low entry price" because 

it requires only a small portion of UML modeling (classes and their attributes and relations), i.e. only a 

graphical modeling tool. EMF uses XMI for storing model definitions. To create such a document, there 

are four options: 

1. creation of an XMI document, directly, by using an XML or text editor; 

2. export  of an XMI document from modeling tools (such as IBM Rational Rose); 

3. annotation of Java interfaces with model attributes; 

4. use of XML Schema to describe the form of model serialization. 

 

The first and third approaches require knowledge of XML and Java, respectively, which is good 

if the developer is familiar with these technologies. The second approach is preferred if we use a 

modeling tool. The last approach is suitable for creating applications that must read or write some XML 

content to a file. 

EMF consists of three fundamental pieces: Core, EMF.Edit and EMF.Codegen. Core provides a 

basic support for generating and executing classes implemented in Java for a model. It includes a meta 

model (ECore) for describing models and runtime support for the models including change notification, 

persistence support with default XMI serialization, and an efficient reflective API for manipulating 

EMF objects generically. EMF.Edit includes generic reusable classes for building editors for EMF 

models and extends the Core by adding support for generating adapter classes that enable preview and 

work with the model, as well as a basic (visual) editor for the model. It also has a command framework, 

including a set of generic command implementation classes for building editors that support fully 

automatic undo and redo. The EMF code generation facility (EMF.Codegen) is capable of generating 

everything needed to build a complete editor for an EMF model. It includes a GUI from which 

generation options can be specified, and generators can be invoked. The generation facility leverages 

the JDT (Java Development Tooling) component of Eclipse. 
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An overview of possibilities and the process of creating an ECore model are shown in Figure 11. 

 
Figure 11. Creating a platform independent ECore model 

EMF also supports three levels of code generation (from the model). It can generate a model, 

which is Java interfaces and implementation classes of all of the model classes, adapter, which adapts 

the model classes for editing and display (called ItemProviders), and editor, which is actually a 

structured editor for an EMF model. 

2.1.5.5.2. ECore modeling concepts 

 

The model used to represent EMF models is called ECore. ECore is itself an EMF model, so we 

can say that it is the meta-model to itself and is usually used to specify platform independent models. It 

is actually also a meta-metamodel. There is often a misunderstanding about meta-metamodels, but this 

concept is actually very simple. A meta-metamodel is just a model of another model, and if that other 

model is a meta-model to itself, then meta-model is actually meta-metamodel (this concept can 

recursively go to meta-meta-metamodels, but ECore puts a limit here, because it is described by itself). 

Figure 2.34 shows the ECore model with its core elements (attributes, relations and operations). 
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Figure 12. ECore model core elements

2
 

From the above diagram, we can see that there are four basic ECore classes that are needed to represent 

a model: 

1. EClass - used for representing a modeled class. It has a name, zero or more attributes, 

and zero or more references. 

2. EAttribute - used for representing a modeled attribute. Attributes have a name and a 

type. 

3. EReference - used for representing an association end between classes. It has a name, 

a boolean attribute that indicates if it implies containment, or a destination reference 

type, which is another class. 

4. EDataType - used for representing attribute types. This type can be primitive, such as 

int or float, or object type, such as java.util.Date. 

 

                                                   
2 
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.emf/org.eclipse.emf/plugins/org.eclipse.emf.ecore/model/Ecore.mdl?roo

t=Modeling_Project&view=log 
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Here we can see that ECore is a small and simple subset of the UML. The standard UML 

supports a more sophisticated modeling than it is the case with EMF core (e.g., UML supports much 

more complex specification of behavior). 

The class instances defined in ECore are used for describing the application model class 

structure. When the classes defined in ECore are extended (inherited) for defining a specific application 

model, it is called the basic (or core) model. Figure 13 shows an example UML class named Student, 

with two String attributes (name and surname). EMF generates a corresponding ECore class (such as 

EClass) and represents it with a Java interface and an appropriate implementation class. The EClass 

for the Student class is mapped to a Java interface: 

 
public interface Student ... 

 

and to an appropriate implementation class: 

 

public class StudentImpl extends ... implements Student { ... } 

 

 
Figure 13. UML class – Student 

This separation of interfaces and implementation is a choice that is enforced in the EMF design. 

The reason for this separation is to stay in line with good programming practices. It is important to 

notice that the generated interface directly inherits the EObject interface: 

 
public interface Student extends EObject { ... } 

 

EObject is an equivalent to the java.lang.Object class, which represents the root class 

for all modeled objects. By inheriting from EObject, the following behaviors are inherited: 

 eClass() - returns the object's meta-object (EClass); 

 eContainer() and eResource() return the object's container and resource; 

 eGet(), eSet() and eUnset() provide an API for reflexive access to objects. 

 

For each attribute in an interface, two appropriate set/get method signatures are created: 

 
String getName(); 

void setName(String value); 

 

Using its notification system (EObject interface inherits Notification interface), EMF 

enables for a simple implementation of relations (references) between classes, i.e., objects. In addition, 

ECore has the possibility to work with methods through its behavior attributes (EOperation and 

EParameter classes, which represent methods and parameters, respectively), as well as with 

packages (and element factories), data types and enumeration types. 

The ECore class hierarchy is shown in Figure 14. 
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Figure 14. ECore class hierarchy 

Each ECore model is stored in an XMI file and starts with the definition of a package that contains all 

other elements (classes, attributes, etc.). An example of an EMF XMI file is shown in Figure 15. 

 
<ecore:EPackage 

    xmi:version="2.0" 

    xmlns:xmi="http://www.omg.org/XMI" 

    xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" 

    name="package"> 

</ecore:EPackage> 

Figure 15. EMF XMI file that contains one (ECore) package 

EPackage represents a package definition, where xmi:version XMI version (OMG), xmlns:xmi and 

xmlns:ecore define namespaces for two XML Schemas that are used, and name is the package name. 

 A class (for example Student) is defined by the eClassifiers tag and the meta-reference 

xsi:type="ecore:EClass". Attributes are represented as eStructuralFeatures with 

EAttribute. An example of a class defined with two attributes in an XMI file is shown in Figure 16 

 
<eClassifiers xsi:type="ecore:EClass" name="Student"> 

 <eStructuralFeatures xsi:type="ecore:EAttribute"  

         name="name" lowerBound="1"  

         eType="ecore:EDataType http://www.eclipse.org/emf/2002/#//EString"/> 

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="surname"  

         eType="ecore:EDataType http://www.eclipse.org/emf/2002/#//EString"/> 

</eClassifiers> 

Figure 16. XMI file with the ECore class serialized from the UML class Student (see Figure 13) 

2.1.5.6. Graphical Modeling Framework (GMF) 

 

While EMF enables generation of code from models, the Graphical Editor Framework (GEF) 

[28] allows developers to create graphical editors for models in a specific domain. EMF does not 
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support generation of graphical editors, so GEF must be used to create basic and advanced editor 

functionalities by hand-coding all elements of such editors, such as figures and editor commands. Every 

diagram is supported by model data, which also includes layout information (e.g., figure positions). 

GEF offer viewers that can be used in Eclipse to display and edit models graphically. It is based on a 

Model-View-Controller (MVC) architecture, where the controller is located between the model and the 

view. It is used to observe the model and update the view to show changes made in a model. GEF have 

two types of viewers, graphical and tree-based.  

The Eclipse Graphical Modeling Framework (GMF) [29] is made to bridge a gap between GEF 

and EMF. It is a framework for building graphical editors: such are UML or business process modeling 

editors. GMF has two main components, tooling and runtime. Tooling is used to create or edit models 

by describing notational and tooling aspects of a graphical editor. GMF framework also has a generator 

that can create a complete graphical editor implementation. Generated plug-in depends on a GMF 

runtime to produce a graphical editor. Creation of a GMF-based graphical editor is shown in Figure 17. 

 
Figure 17. GMF development flow as a BPMN process 

Creation of GMF-based graphical editor consists of the following steps: 

 Creation of a GMF project and importing a domain model expressed in EMF; 

 Creation of a graphical definition, that defines graphical elements to be displayed in the editor; 

 Creation of a tooling definition model, which is used to specify elements such as pallet, tools, 

and actions for graphical elements; 

 Creation of a mapping model, that defines mappings between the domain model elements and 

the graphical elements; 

 Generation of a graphical editor (plug-in). 
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The result of the code generation is a fully functional graphical editor, in the form of an Eclipse plug-in.  

2.2. Service compositions  

 

As noted in the introduction, Web services are “self-describing, open components that support 

rapid, low-cost composition of distributed applications” [99], and they can be composed in entities that 

support automated execution of business processes (called service compositions). While a service-

oriented architecture is a software architecture style focusing ”on how services are described and 

organized to support their dynamic automated discovery and use” [16]. 

Service compositions can generally be interpreted as implementation of business processes (single 

composition service) from services. Resulting service compositions can be (re)used in further service 

compositions. Such compositions can be offered as a complete application [99]. Currently, there are two 

well-known business interaction protocols that compose services, and they are known as 

“orchestrations” and “choreographies”.  

A service orchestration is an interaction between services at a message level controlled by one 

party. According to the W3C‟s Web service glossary [135]: “An orchestration defines the sequence and 

conditions in which one Web service invokes other Web services in order to realize some useful 

function. I.e., an orchestration is the pattern of interactions that a Web service agent must follow in 

order to achieve its goal.” Orchestration is the interaction between services at a message level controlled 

from one party. Such business processed can result in a “long-lived, transactional, multistep process 

model” [99]. There is presently a standard for service orchestrations called Web Services Business 

Process Execution Language (WS-BPEL) language [49] or for short BPEL. The current research 

demonstrates that the most common approach to modeling service orchestrations is based on the 

principles of business process modeling. In the context of orchestration modeling, BPMN [88] and 

UML activity diagrams are two typically approach. Actually, in the recent BPMN specification, there is 

a partial mapping defined between BPMN and BPEL [49]. We can consider this from the perspective 

that service compositions include creation of a business processes (single composition service) from 

composite Web services. Resulting service composition can be used in further service compositions 

A service choreography, on the other hand, defines a message exchange that occurs between 

services. In choreography, every party defines their own part in the interaction. According to the Web 

service glossary, “a choreography defines the sequence and conditions under which multiple 

cooperating independent agents exchange messages in order to perform a task to achieve a goal state” 

[135]. This definition is further specialized in the Web Service Choreography Description Language 

(WS-CDL) candidature recommendation [55]: “a choreography defines re-usable common rules that 

govern the ordering of exchanged messages, and the provisioning patterns of collaborative behavior, as 

agreed upon between two or more interacting participants.” The key aspect is messages exchanged 

among collaborating parties, which agree on rules for ordering of messages. There are two approaches 

to modeling of choreographies [25]: interaction models and interconnected interface behavior models 

(interconnection models). Interaction models are built up of basic interactions (message exchanges), 

while interconnected interface behavior models define control flows of each participant a choreography. 

The representatives for the interaction model approach are WS-CDL [55], Let‟s Dance [150] and 

iBPMN [25]. Interconnected interface behavior models can be represented in BPMN [88] and 

BPEL4Chor [23]. 

In the rest of the section, we give a short introduction to the Web services, and we describe two 

main service compositions languages, WS-BPEL for orchestrations and WS-CDL for choreographies. 

2.2.1. Web services 

 

There are three well-known definitions of Web services: “A Web service is a loosely coupled 

software component that exposes functionality to a client over the Internet (or an intranet) by using web 
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standards such as HTTP, XML, SOAP, WSDL, and UDDI” [131]. The second definition: “A Web 

Service is a software system designed to support interoperable machine-to-machine interaction over a 

network. It has an interface described in a machine-processable format (specifically WSDL). Other 

systems interact with the Web Service in a manner prescribed by its description using SOAP-messages, 

typically conveyed using HTTP with an XML serialization in conjunction with other Web-related 

standards.”[135]. The third definition “A Web service is a software system identified by a URI, whose 

public interfaces and bindings are defined and described using XML. Its definition can be discovered by 

other software systems. These systems may then interact with the Web service in a manner prescribed 

by its definition, using XML based messages conveyed by Internet protocols”
3
. 

 The Web services technology is based on three main specifications: 

 

 SOAP is an XML-based protocol used for invoking operations and exchanging messages, in a 

distributed environment [134]. The SOAP protocol is based on SOAP messages that are 

exchanged among SOAP nodes, where every message has an optional header used for storing 

meta-information and a mandatory body. A commonly used transport protocol for SOAP is 

HTTP. 

 WSDL (Web Services Description Language) is a language used for description of Web 

services, i.e., its interfaces and operations [136]. An operation is a point of interaction with a 

service, which consists of a message exchanged between the service and other parties. WSDL 

also describes an endpoint, which represents a point of contact for a service and its physical 

location. 

 The UDDI (Universal Description, Discovery and Integration) protocol is used to discover and 

publish Web service descriptions in a central service registry [87].   

 

In Figure 18, we show the Web service platform stack. It has five main layers: transport, messaging, 

description, quality of service and compositions. The Transport layer is used by the Messaging layer 

technologies to transport messages. The second layer (Messaging) is used for distributing messages 

between parties. The Description layer is a layer where WSDL is placed and it is used for describing 

Web services. The Quality of service layer deals with service cooperation, monitoring and service level 

agreements. In addition, on top is the Compositions layer where orchestration and choreography 

languages reside. All of these layers are supported by native compatibilities, such as publication and 

discovery of Web services, realized with UDDI. 

 

                                                   
3 http://www.w3.org/TR/wsa-reqs/ 

http://www.w3.org/TR/wsa-reqs/
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Figure 18. Web services platform (adapted from [145]) 

2.2.2. Process orchestrations - WS-BPEL 

 

BPEL is a process-based language for defining interactions between partners [49]. It is XML-

based language for defining service interactions between Web services participating in an interaction 

(partners). BPEL is developed by Microsoft, IBM, Siebel Systems, BEA, and SAP. The main result of a 

BPEL composition is a process and the basic BPEL element is an activity, which can be basic or 

structured. A partner involved in an interaction is identified by a WSDL interface and defined as a 

partnerLink. WSDL is also used in BPEL to define the public entry and exit points for a process 

and data types that are passed between partners. BPEL has a support for exception handling through the 

throw and catch clauses. BPEL compositions can be abstract or executable, where former capture non-

executable interactions between services, the later is intended to be deployed on an execution engine. 

Basic BPEL elements are used for a simple communication: 

 defining a process: <process>; 

 invoking and receiving a partner service invocation: <invoke>, <receive>, 

<reply>; 

 variable support: <assign>, <empty>, <copy>; 

 defining partners in communication: <partnerLink>. 

 

Structured BPEL elements are used for control flow and imperative programming: 

 sequence and parallel flow: <sequence>, <flow>; 

 loops and conditional branches: <while>, <switch>. 

 

An example of a BPEL business process for a simple book loan request is given in Figure 19. 
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<process name="BookRequest" ...> 

 <!-- variable declarations --> 

 <flow> 

   <links> 

     <link name="request-book"/> 

     <!-- other links --> 

   </links> 

   <sequence> 

      <receive createInstance="yes" name="receiveBookRequest" 

          portType="bookP" operation="sendBookRequest" 

          variable="BookName"> 

          <source linkName="request-book"/> 

      </receive> 

      <invoke operation="checkIsBookAvailable" inputVariable="BookName" 

              outputVariable="IsAvailable" portType="userP" 

              partner="airline"> 

              <target linkName="request-book"/> 

      </invoke> 

      <!-- invoke other services --> 

      <reply variable="BookInfo" portType="bookP" 

             operation="sendIsBookAvailableInfo" /> 

   </sequence> 

 </flow> 

</process> 

  
Figure 19. Book request BPEL process 

A BPEL process is executed by a BPEL engine such as ActiveBPEL, IBM WebSphere or 

Microsoft BizTalk. 

2.2.3. Process choreographies - WS-CDL 

 

WS-CDL is a declarative XML-based language for describing message exchange and information 

handling by involved parties in order to achieve a business goal [55]. It is not designed as an execution 

language. The WS-CDL specification defines a choreography that can be seen as a contract that has 

been made between participants. Each participant has to conform to the contract by defining their own 

services. Each choreography description in WS-CDL consists of a WS-CDL document, which describes 

participants and their relations and optional interface of the participating services, defined by using 

WSDL or Java.  

In Figure 20 we show main WS-CDL concepts and resulting XML elements. Every XML element 

is drawn as rectangle. 
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Figure 20. WS-CDL structure [13] 

Information handling. WS-CDL types are modeled by using informationTypes, and they reference 

type definitions defined as a WSDL or XML Schema elements. They are referenced by variables and 

tokens, where tokens reference to an informationType and informationTypes provide identification for 

channelTypes.  Variables contain information exchanged between of the roleTypes. 

Interactions. In WS-CDL, exchanged information is modeled between participants as seen from a 

global viewpoint . Every participant is a requester of a service, but in the same time a provider of 

another service. Participant is modeled by the participantType, and it plays a set of roles, so it contains 

one or more roleTypes. A roleType represents one on several observable behaviors of a participant 

through message exchanges (identifies a WSDL interface type). A relationshipType contains exactly 

two roles (roleTypes), which interact in a choreography. A channelType specifies where and how 

information is exchanged between participants. It references a roleType which is a target of an 

information exchange.  

Activities. A choreography can include one of three types of activities: basic activities, ordering 

structures and WorkUnit activities. Basic activities define interactions on the choreography flow and 

basic activity can be one of the following types: 

 Interaction activity describes what information to be exchanged among participants. It has 

a channelVariable, which binds to a channelType and a WSDL interface, and a SOAP 
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operation, which is defined through the WSDL interface. This activity also includes a 

participate element that defines receiving and sending role, and an exchange element 

which variables are used in an interaction and is action request or response type. 

 Assign activity is used for creation and manipulation of variables. 

 SilentAction activity defines where one or all participants in the choreography perform 

actions with non-observable behavior. 

 PerformActivity is used to perform a separate choreography. 

 NoAction is used to define where a participant does not perform any action. 

 FinalizeActivity concludes a choreography. 

 

Ordering structures are used to specify a control flow by ordering activities. Those structures are: 

sequence, for handling activities in a sequential order, parallel for handling activities in a parallel order, 

and choice for handling Data-driven (based on a condition) or Event-driven activities (hold until an 

event occurs or while a variable is populated).  

WorkUnits are used to group one or more activities into a single unit with a conditional execution 

of such activites. The condition can be repetitive (repeat is set to true and enclosed activities are 

repeated upon being completed), competitive (multiple workunits are defined inside choice) or blocking. 

The conditional statement is defined by the guard condition, which determines whetether workunit is 

performed at all. If guard condition is false then workunit is skipped.  

In Figure 21, we show an example of a simple book loan request choreography. In Figure 21a, we 

show package information, where a package element is the root element of the choreography. The 

package element contains informationType definition and variables (bookRequest). A roleType 

represents an actor in a message exchange and it associaties operation name, as well as its WSDL 

interface by using the behavior element. In this example, ServiceProviderRole implements the WSDL 

ReceiveBookRequest operation. The relationShip type connects two roles, i.e., CustomerBookRequest 

associates the ClientRole to the ServiceProviderRole. The participantType groups two roles, and the 

channelType defines the role that the receiver of a message plays, that is, a return channel for the 

response to a submission. Every package contains choreography definition that specifies relationships. 

In Figure 21b), there is a relationship between the Customer and the Library. Next, variables are 

declared, that are used by the ClientRole and the ServiceProviderRole. The interaction element is used 

to define a communication and direction of a message from a sender (fromRole) to a receiver (toRole). 

The exchange element contains name of the operation used in interaction. Then, WorkUnit is defined by 

using the WS-CDL functions isVariableAvailable and getVariable to get variable information from a 

Library and based on that a notification of book availability is sent to the Client. 
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<package name="BookLoanRequestService" ...> 

  <informationType name="correlationId"    

                   type="string"/> 

  <informationType name="bookRequest"  

                   type="bookRequest.xsd"/> 

  ... 

  <roleType name="ServiceProviderRole"> 

      <behavior name="ReceiveBookRequest"  

                interface="Library.wsdl"/> 

  </roleType> 

  ... 

  <relationshipType name="CustomerBookRequest"> 

 <role type="ClientRole"/> 

 <role type="ServiceProviderRole"/> 

  </relationshipType> 

  ... 

  <participantType name="Library"> 

 <role type="ServiceProviderRole"/> 

 <role type="ServiceRequesterRole"/> 

  </participantType> 

  ... 

  <channelType name="SubmitBookLoanRequest"  

               action="request"> 

    <passing action="respond"  

         channel="ReturnIsBookAvailableChannel"/> 

 <reference> 

    <token name="libraryRef"/> 

 </reference> 

 <identity> 

    <token name="processId"/> 

 </identity> 

  </channelType> 

  ... 

  <choreography>  

  ... 

  </choreography> 

</package>  

<choreography name="BookLoanRequest" root="true"> 

  <relationship type="tns:CustomerLibrary"/> 

  ... 

  <variableDefinitions> 

     <variable name="AS" mutable="true"  

       free="false" informationType="bookRequest"  

       silent="false" 

       roleTypes="Client, Library"/> 

     ... 

  </variableDefinitions> 

  <sequence> 

     <interaction name="BookLoanRequest"  

      channelVariable="tns:SubmitBookLoanRequest"  

      operation="ReceiveBookRequest"  

      initiate="true"> 

  <participate  

           relationshipType="CustomerBookRequest"  

           fromRole="tns:ClientRole"  

           toRole="ServiceProviderRole"/> 

        <exchange  

           name="BookRequestExchange"  

           action="request"  

           informationType="bookRequest"> 

  <send variable="AS"/> 

  <receive variable="AS"/> 

 </exchange> 

     </interaction> 

     ... 

     <choice> 

 <workunit  

           name="CheckBookRequestNotAvailable"  

           guard="cdl:isVariableAvailable   

                (cdl:getVariable( "isAvailable" ,

      "ServiceProviderRole") = false)"  

           block="true"> 

    <interaction name="BookIsNotAvailable"  

                       channelVariable=  

                     "BookIsNotAvailableChanngle" 

             operation="BookIsNotAvailable"  

                  initiate="false"> 

  <participate  

           relationshipType="CustomerBookRequest"  

               ... /> 

 </workunit> 

      ... 

      </choice> 

   </sequence> 

   ... 

</choreography> 

  
a) b) 

Figure 21. WS-CDL choreography example 

Choreography modeling in WS-CDL is supported through a tool called Pi4soa [103]. 

 

2.2.4. Process choreographies – BPEL4Chor 
 

BPEL4Chor is created by Decker et al. [23] [24] [25] and represents an extension of a BPEL 

language for modeling choreographies, i.e., interconnected interface behavior descriptions for defining 

choreographies. BPEL4Chor is built in the way that it abstract communication activities of 

choreographies (i.e., elementary interactions) from technical configuration.  

Modeling a choreography in BPEL4Chor includes following activities: 

1. Definition of the participants and participant types. 

2. Definition of the message links between participants, i.e., data artefacts exchanged between 

participants. 

3. Specification of the behavioral depedencies and data flow between message exchanges, i.e., 

order of messages. 
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4. Connection (grounding) of an each message link to the concrete services. This includes 

defining of serialization formats for the messages, etc., and it represents an optional activity. 

BPEL4Chor also includes a three different artefact types:  

1. Partticipant behavior description, defines the control flow depedencies between activites. 

2. Participant topology is used to define structural aspects of a choreography, and this includes 

specifying participant references, types and message links. 

3. Participant grounding define the concrete technical configuration for a choreography, i.e., 

links to WSDL and XSD definitions. 

In addition, it is possible to create an executable BPEL process from the BPEL4Chor participant 

behavior description, by defining the parcitipant grounding for each participant. This represents an 

input for the transformation which transforms such an description to the executable BPEL process 

[24]. 

2.3. Business processes 

 

In this section, we introduce key concepts of business processes, as well as languages for 

representing business process models. 

 

2.3.1. Concepts and terminology 
 

According to Weske [146], a business process consists “of a set of activities that are performed 

in coordination in an organizational and technical environment. These activities jointly realize a 

business goal. Each business process is enacted by a single organization, but it may interact with 

business processes performed by other organizations”. A business process can also be defined as “a 

process that creates a value or result for a customer. It is directed by the business objectives of a 

company and by the business environment” [107]. Business process consists of activities that are 

executed in coordinated way in order to achieve some goal and they are represented with business 

process models. According to [146], activities can be system activities (activities which does not 

involve human user, they are entirely executed by software), user-interaction activities (activates that 

workers perform using software such as entering data on a form), or manual activities (that are not 

supported by software). Workflows realize a part of a business process, so it is associated with a 

process. Business process modeling is an activity that includes different concepts, such as business 

process, workflow and activity.  

 Business process management includes “concepts, methods, and techniques to support the 

design, administration, configuration, enactment, and analysis of business processes” [146]. Business 

process management complexity is distributed through different levels of abstractions [146]. There is 

horizontal abstraction that denotes separation of modeling levels, from the instance and the model level 

to the (meta) metamodel level. The horizontal abstraction separate concepts as identified by the OMG in 

the MDA [85]. This abstraction is shown on MOF in Section 2.1.5.1. Along with horizontal abstraction, 

often it is needed to separate subdomains in order to integrate modeling efforts in different subdomains, 

such as: functional modeling, information modeling, organization modeling and IT landscape modeling. 

In order to define basic concepts of business process models from metamodelling point of view, 

different concepts are identified [146]: 

 Process model is a collection of different activities used to produce certain goals. A 

process models contains related nodes and directed edges. 

 Edge is used to express connections between nodes in a process model. 

 Node represents activity model, event model or a gateway model in a process model. An 

activity model is a unit of work in a process model that can appear only once and activity 

model is usually represented with rectangle with rounded edges. Every activity model 
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“can have exactly one incoming edge and exactly one outgoing edge” [146]. An event 

model represents a state occurrence in a process model, such as start or end event 

models. Such models are usually represented with circles in business process modeling 

languages. A gateway model represents control flow constructs, such as: split, join nodes 

and sequences. Such models are usually represented with diamonds. 

Along with basic process model concepts, there are two more important issues: process 

instances and process interactions [146]. A process instance is always connected to one process model 

and it contains an arbitrary number of activity, event or gateway instances, all of which are associated 

with exactly one process model. Process interactions are interactions between different parties. These 

interactions are usually defined in a peer-to-peer way, by following predefined choreography or 

orchestration [146].  

2.3.2. Business Process flexibility and variability 

 

Flexibility is one of the important properties of the business processes, and flexibility in this 

case means that business process should be easily adapted to the frequent changes. Regev et al. [109] 

defines business process flexibility as “the capability to implement changes in the business process type 

and instances by changing only those parts that need to be changed and keeping other parts stable”. 

However, it is hard to measure such flexibility. Kasi and Tang [53] proposed a framework for 

comparison of business processes, where they described flexibility of business processes in the three 

dimensions: 

 Time – the process should adapt to change more quickly; 

 Cost – the process should adapt to change with less cost; 

 Ease – the process should adapt to change with maximum ease. 

 

From this, we can conclude that process flexibility could be achieved with less both time and 

costs;  for the ease dimension, we can say that is important to change a minimal number of elements in 

minimal number of places.  

Along with flexibility, one important concept in SOA and business process modeling is 

variability, which is defined as a “property of an object of being changeable” [48]. It has been reported 

recently that there has been paid little attention to variability of business processes [48]. However, in 

[119] authors identified different variability mechanism that can be used in process models. They 

addressed some basic variability mechanisms, such as: encapsulation of varying sub-processes, 

parameterization, addition, omission, and replacement of single elements, and data type variability. 

These variability points are shown in BPMN diagrams and implemented with Java variability 

mechanisms and code generators. Goldszmidt & Osipov [41] propose a more general solution to 

implementing variability in workflows, called “point-of-variability”. They define point-of-variability as 

“locations where decisions are implemented that are likely to change and thus should be externalized”. 

By using the points-of-variability it is possible to choose among more alternatives for one workflow 

element (such as activity) based on some predefined condition. Business rules are presented as one of 

the possible implementations for variability points at runtime. Ejindhoven et. al [30] followed this 

approach in their proposed methodology, where variability points are identified in the first step of the 

methodology. Later, those variability points are modeled by means of workflow patterns, which can use 

business rules in order to be more expressive. 

2.3.3. Business Process Modeling Languages (BPML) 

 

In this section, we describe main business process modeling languages, including Event Driven 

Process Chains, Petri Nets, Integrated DEFinition Method 3 (IDEF3), UML 2.0 Activity Diagrams, 
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Agent Object-Relationship Modeling Language (AORML), Lets‟ Dance, Business Process Modeling 

Notation (BPMN) and iBPMN. We chosed these languages because they represent a de facto standard 

in academics and industry in the modeling of business processes. 

2.3.3.1. Petri nets 

 

Petri nets are designed for modeling, simulation and analysis of processes and systems [100] and 

they can be used for specifying business processes in a formal way. Carl Adam Petri introduced Petri 

Nets in his dissertation [102]. Originally, Petri Nets were designed to model dynamic systems with 

static structure by using a graphical syntax. There are different types of Petri Nets, such as colored Petri 

Nets [52], relation Petri Nets [7], condition/event nets, place/transition nets and predicate/transition 

nets.  

A Petri Net is directed graph that consist of places, transitions, tokens and directed arcs. 

Transitions have input and output places and they are interpreted as actions, activities or events that 

cause a change of a state. Places represent possible states of the system. In the graphical notation, places 

are represented with circles, connectors by directed arcs and transitions by rectangles. Tokens are 

placed within a state, which is called marking, and the state of a system is recorded through different 

token states. Transitions have input and output places, where input places of transition are the places at 

the sources of its incoming arcs, and transition‟s output places are places to which arcs run from a  

transition. A transition may fire if it is enabled. It is there is a token in each of its input places. When a 

transition fires, the transition uses tokens from its input places and performs a task. Then, the transition 

places a specified number of tokens into each of its output places. In addition, multiple transitions can 

be enabled at the same time.  

A simple Petri Net representing a process model is shown in Figure 22. This Petri Net has two 

places (p1 and p2) and one transition (t1). When the first place fires, the second place receives a token. 

The process starts when the token is placed on place p1, and the token is represented by the black dot in 

that place. 

 

 
Figure 22. Simple Petri Net 

One important type of Petri Nets is colored Petri Nets. In standard Petri Nets, it is impossible to 

distinguish types tokens, and this shortcoming in is addressed by the color feature, where every token 

has a value. A Petri Net metamodel proposal is shown in Figure 4 and in [36]. 

2.3.3.2. Event Driven Process Chain (EPC) 

 

Event-Driven Process Chain (EPC) [117] is a graphical business modeling language developed 

by August-Wilhelm Scheer in 1992 at the University of Saarland in Germany in collaboration with SAP 

AG, as part of the ARIS framework (Architecture of Integrated Information System). EPC was 

developed with the goal to be understood by business people. The EPC approach is usually denoted 

with a ARIS house with three pillars and a roof, as shown in Figure 23. The roof represents an 

organizational view, while pillars represent data, control and functional view. The focus of control view 

is on integration of all other views and it provides links among the artifacts in those views. It integrates 

all elements that are designed separately in different views, into a common context and a resulting 

model is EPC. 
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Figure 23. ARIS business process framework [117] 

The data view is expressed by using the Entity Relationship (ER) diagrams or by using the UML class 

diagrams and it consists of events and statuses. This view contains different data objects that are used 

by function during process execution. The functional view contains descriptions of relationships 

between functions, description of sub-goal and goals that need to be performed. The organizational 

view includes relationships between organizational units of an enterprise at the type and instance levels, 

as well as organizational aspects of information technology of the enterprise.  

The main building elements of Event-Driven Process Chains are shown in Figure 24. 

 

 
Figure 24. Notation of EPC elements 

 

Those elements are: 

 Functions in EPC model activities and tasks within the company and they represent units 

of work; 

 Events are passive elements as they don not provide decisions. Events are created by 

functions or by actors outside of a model and they describe under what conditions a 

function works or in which state a function results. 

 Connectors are used in EPC to connect functions and events in the control flow. The 

three types of connector exist in EPC: logical AND, OR, and exclusive or (XOR). They 

serve all as split and as join nodes. 

 

We show simple an ECP diagram in Figure 25. This process start by receiving a request and this 

request is represented by an event, as an event EPC diagram must start with an event. After receiving 

the request, the request is analyzed and is either accepted or rejected.  

 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

33 

 

 
Figure 25. An example of Event-Driven Process Chain 

 

There are currently two well-known metamodel proposals for EPC, one shown as a UML class model 

[63], and another shown as an ER model [120]. We here show the first metamodel, as it follows MDE 

metamodeling standard (see Figure 26). This metamodel support all EPC concepts, such as functions, 

events, logical operators and control flows. 

 

 
Figure 26. EPC metamodel [63] 
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2.3.3.3. Integrated DEFinition Method 3 (IDEF3) 

 

IDEF3 is designed to model business processes and sequences of a system [75]. It provides the 

two perspectives: the process view (process sequence model) and the object view (objects-state-change 

model). The process view models a process sequence, while the object view describes object states 

which an object can have throughout a process. These two views contain units of information that form 

a system description, and they are called basic units. 

IDEF3 process-centered strategy provides a visualization of process-centered descriptions of a 

scenario. It mainly consists of Units of Behavior (UOB), Links and Junctions. IDEF3 also has references 

and notes, which are elements used across process and object schematics. These main elements are 

shown in Figure 27. UOB‟s represent activities in a business process. A UOB is graphically represented 

by a rectangle with a reference and label. If a UOB is complex, it is possible to decompose it into its 

components. Link describes relationship between UOB‟s and is represented with an arrow. Junctions 

are used to represent branches, and that is logical operators AND, OR and XOR.  

 IDEF3 support three types of links: simple precedence links, constraint precedence links and 

dashed links. Simple precedence links are used to express temporal precedence relations between 

UOBs. They are represented graphically by using a solid arrow and are most widely used link. 

Constraint precedence links add additional semantics to simple precedence links that every instance of 

source UOB must be followed with instance of destination UOB. Dashed links have no predefined 

semantics, so they are usually called relational links. This type of links shows existence of relationship 

between two UOB‟s.   

 

 
Figure 27. Symbols used for IDEF3 Process Description Schematics [75] 
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 There are four types of junctions in IDEF3, two fan-out junctions: AND junctions are 

divergence branch points that involve multiple parallel subprocesses, while OR junctions are divergence 

branch points which involve different alternative subprocesses, and two fan-in junctions: AND and OR 

which represent points of convergence, involving multiple parallel subprocesses and multiple 

alternative subprocesses, respectively. 

 IDEF3 support four types of referents: UOB, Scenario, Transition Schematic and Go-to 

referents. A UOB referent type specifies that another instance of previously defined UOB occurs at a 

specific point in the process. A Scenario referent type indicates that next happening in the process flow 

is an occurrence of an activation of the referenced Scenario. A Transition Schematic referent type has to 

be initiated during an activation of its associated UOB. They are connected through a simple connecting 

link. A Go-to referent type references another UOB, and it is often used to describe loops in a process. 

 The Object View consists of Object States, Links, Relations and Junctions. These elements are 

shown in Figure 28. An object is of a certain kind, is represented simply by a circle and denoted by a 

label. Relations describe taxonomy relationships between objects, while transitions describe change 

from an Object A to an Object B, which are connected through Links. If a stronger connection between 

two objects is needed to be shown, a double-headed arrow is used.  

 In IDEF3 Individuals are referred as first-order objects, while second-order objects are 

Properties and relations that hold among individuals.  

 

 
Figure 28. Symbols used for IDEF3 Object Description Schematics [75] 

An example of a simple book request business process in the IDEF3 notation is shown in Figure 29. 
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Figure 29. Example business process in the IDEF3 notation 

2.3.3.4. UML 2.0 Activity Diagrams (AD) 

 

Activity diagrams are one type of the seven behavioral diagrams in the UML 2.0 language that 

show sequence of action executions [96]. They are used to model actions (i.e., flow from activity to 

activity) and a business processes. Main elements of activity diagrams are actions nodes and activity 

partitions, where activity partitions are used to group action nodes. In Figure 30, we show main 

elements of UML 2.0 activity diagrams.  

 

 
Figure 30. Basic elements of UML 2.0 Activity Diagrams 

Actions are shown as rounded rectangles, with their name (verb) in them. Every activity diagram starts 

with the start node (initial node) and ends with the final node (activity final). A flow of activity among 

activity diagram elements is marked by using a line with an arrowhead. The Object Flow shows an 

object or a data passing between activities. The Merge node is used to synchronize multiple incoming 
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flows into a single flow. The Join node is similar to the merge node with a difference that the join 

synchronizes two incoming flows and produces a single outgoing flow, and outgoing flow from a join 

cannot execute until all the incoming flows are received. The Merge passes control flow whenever it is 

reached by an incoming flow. The Decision accepts one incoming flow and can have multiple outgoing 

flows with conditions defined on each outgoing flow. Those conditions are represented in square 

brackets. The Fork node is used to split one incoming control flow into multiple outgoing flows.  

 An example of simple UML 2.0 Activity diagram for book request is shown in Figure 31. 

 

 
Figure 31. An example of UML 2.0 Activity diagram 

 

 UML 2.0 activity diagram elements are represented in UML 2 metamodel. Figure 32 shows an 

excerpt of the UML 2 metamodel for Activity Diagrams. This metamodel contains all elements of 

Activity diagrams, such as Activity, Action, ActivityPartition, ControlFlow, ObjectFlow, ForkNode, 

JoinNode, DecisionNode and MergeNode.  
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Figure 32. An excerpt of the UML 2 metamodel for Activity Diagrams [63] 

2.3.3.5. Agent Object-Relationship Modeling Language (AORML) 

 

The AOR Modeling language is a language for modeling organizational information systems 

[128] [129]. This language model business processes by modeling agents, events, actions, claims and 

commitments, with basic relationships from UML class and ER modeling, such as aggregation, 

association, and generalization. The AOR Modeling language follows the business agents-based 

approach, which includes six perspectives of agent-oriented modeling: organizational, informational, 

interactional, functional, motivational and behavioral. It can model all of these perspectives and to 

represent multiple perspectives on the same diagram by using a combination of goal-based use cases. 

Business processes are defined by modeling agent‟s behavior, primarily by means of interaction 

patterns expressed in the form of reaction rules. 

AORML agents can communicate, perceive, act, make commitments and satisfy claims, while 

objects are passive entities that do not have such capabilities. There are two types of AOR models, 

namely, internal and external models. An internal AOR model employs the first person view of a 

particular agent to be modeled, and an external AOR model shows a perspective of an external observer 

who is looking at agents and their interactions. 

Figure 33 show basic elements of external AOR structure modeling. The AOR graphical 

modeling notation follows the UML 2.0 principles. The main elements of the external AOR structure 

modeling include agent types and instances, with their internal agent types and instances, their beliefs 

about objects and external agents, as well as relationships between agents [129]. 

 
Figure 33. Basic elements of external AOR structure modeling [129] 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

39 

 

The AORML graphical notation includes action event and non-action event types, and communicative 

action event and non-communicative action event type, as well as commitment/claim type, which are 

coupled with the action event type whose instances fulfill corresponding commitment. One of the main 

behavior modeling elements of AORML are reaction rules. They are used to express interaction 

patterns. Figure 34 contains an example of a AORML diagram with a reaction rule expressed by a circle 

with incoming and outgoing arrows, which are drawn within the agent rectangle. Every reaction rule 

has exactly one incoming arrow that specifies the triggering event type and two kinds of outgoing 

arrows: one for specifying changing beliefs and commitments and another one for specifying the 

performance actions. The outgoing connector with a double arrowhead denotes a mental effect, while 

the outgoing connector to an action event type denotes the performance of an action of that type [129].  

 
Figure 34. An example of AORML diagram [129] 

Figure 34 shows an example of an AORML model where the Seller‟s reaction rule is used to perceive a 

communicative action event of the type requestPurchaseOrder. This rule has a precondition, which 

defines the availability of the ProductItem for the Buyer by checking the database of the Seller, and a 

post-condition, which affects the representation of the corresponding ProductItem in the Seller’s 

database by decreasing its inventory attribute by the requestedQuantity value of the message received 

from the Buyer. Both, the precondition and post-condition are represented by using the Object 

Constraint Language (OCL) expressions [94]. 

 The metamodel of AORML language is shown in Figure 35. It includes all views and concepts 

of agent-oriented modeling approach.  
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Figure 35. The metamodel of the AORML language [128] 

2.3.3.6. Let’s Dance 
 

Let‟s Dance is a high-level choreography description language for modeling interaction models 

between participants [150]. It supports high-level modeling of choreographies and it is based on control 

flow and service interaction patterns. Let‟s Dance supports two different diagram types for modeling 

choreographies, including global models and local models. Global models are interactions defined from 

a viewpoint of an observer who see all interactions among services, while local models show only those 

interactions of a particular service. 

 Let‟s Dance model elementary interactions (message exchanges) between participants. Those 

interactions are building blocks for more complex interactions (choreographies) [146]. An elementary 

interaction represents a combination of a send activity model and a receive activity model, where an 

actor reference belongs to a role given for each activity model. Such a reference shows which activity 

instances must be performed by the same participant (usually one per role in a conversation). 

 In Figure 36, we show a description of elementary interactions in Let‟s Dance. This interaction 

is defined between a participant role 1 and a participant role 2, and it defines that a message type is sent 

during the interaction. This interaction defines a condition that evaluates if an elementary interaction is 

valid. 
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Figure 36. Elementary interactions in Let‟s Dance 

There are four basic interaction constructs in Let‟s Dance, as shown in Figure 37. The first interaction 

shown in Figure 37a is Precedes, and it defines that after a receipt of a message (Message type) by 

participant role 2, participant role 2 is able to send a message (Message type 2) to sender participant 

role 1. Figure 37b shows the Inhibits relationship, with a crossed directed line, and the relationship 

defines that after sender participant role 2 receives the message (Message type) from participant role 1, 

sender participant role 2 cannot send the message (Message type 2) to participant role 1. In the case 

when two interactions inhibit each other, these situations are handled with the Vice-versa-inhibits 

relation shown in Figure 37c. Finally, relation called WeakPrecedes shown in Figure 37d denotes that 

participant role 2 cannot send a message (Message type 2) until participant role 1 has sent a message 

(Message type), i.e., when a source interaction has reached the “completed” status. 

 

 
Figure 37. Basic control flow constructs in Let‟s Dance 

Along with basic control flow constructs, Let‟s Dance also support some advanced control flow 

constructs, where multiple interactions can be part of a composite interaction [146]. This language is 

not represented by a metamodel. 
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2.3.3.7. iBPMN 

 

Decker et al. [22] extended the BPMN language with additional constructs to make it possible to 

model choreographies without shortcomings of the standard BPMN language, such as deadlocks or 

redundancies. They named the extended language - iBPMN. Redundancies are discovered in BPMN 

where modelers need more time to create and understand the models because branching, loops, and 

timeout events are duplicated in the model, as reported in [22]. Deadlocks are identified in situations 

when one participant waits for the other one to respond, while that participant also waits for the first 

participant to start some action; in such a case both the participants would wait endlessly.  

iBPMN model interactions among parties, where each interaction is attached to a message flow 

in iBPMN, as shown in Figure 38. In iBPMN, pools are empty and only interactions among pools are 

shown. In this scenario, several bidders are involved in an auction, and in order to denote that it is 

possible to have multiple bidders, the shadowed pools (called participant sets) concept is introduced 

(the “Bidder” pool). At the start of the auction scenario, the Seller begins the auction. In this case, an 

explicit choice is used to model that where a participant decides which branch to take by using a data-

driven XOR gateway. In addition, there is an association between the gateway and one of the pools in 

order to define who is responsible for carrying out the choice. Another important extension in iBPMN is 

the concept of participant reference passing. In Figure 38, the Seller needs to pass the Payment service 

reference to the Bidder, so that the Bidder can know what Payment service to use for the payment 

process. This reference passing is represented by using a data object attached to the message flow and 

with the corresponding participant. 

 

 
Figure 38. iBPMN interaction model for auction scenario (adapted from [22]) 
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2.3.3.8. Business Process Modeling Notation (BPMN) 

 

The BPMN is a de-facto standard for modeling business processes and it is created by OMG to 

be easily understandable for all business users [88]. BPMN has a graphical concrete syntax, but has no 

specific metamodel standardized in version 1.2, just a mapping to the Business Process Definition 

Metamodel [90]. Currently, there are also two possible options for BPMN language metamodel, and we 

analyze them in this chapter. 

2.3.3.8.1. BPMN Language: Graphical Concrete Syntax 

 

BPMN represents an OMG adopted specification [88] whose intent is to model business 

processes. The current version of BPMN is 1.2 [88], while a major revision process for BPMN 2.0 is in 

progress [89]. The later also includes a proposal for BPMN metamodel. In this thesis we will use 

BPMN 2.0 Beta 2 specification [89]. BPMN identifies the best practices of existing approaches and 

combines them into a new, generally accepted business process modeling language. Business process 

models are expressed in business process diagrams. Each business process diagram consists of a set of 

modeling elements. The details and different types for each group of BPMN modeling elements are 

given in Table I. 

The BPMN in version 2.0 includes three types of flow objects that define behavior: Events, 

Activities and Gateways. In Figure 39 we show high-level structure of a BPMN as a mind map. 

 

 
Figure 39. BPMN high-level structure 

2.3.3.8.1.1. Events 

 

An Event in BPMN is defined as “something that „happens‟ during the course of a business 

processes” [88]. Events can be partitioned into three types, based on their position in the business 

process: start events are used to trigger processes, intermediate events can delay processes, or they can 

occur during processes [89] [146]. End events signal the termination of processes. The notational 

elements for the event trigger types are shown in Figure 40. 
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Figure 40. Event types in the BPMN [89] 

Start events can have different triggers:  

 

 None: No specific event trigger type is given. This is used when a subprocess is started by its parent 

process. 

 User: A user manually starts a process, creating the start event of the process. 

 Message: A message is received by a participant. The receipt of the message is then represented by a 

message event. 

 Timer: A specific date or a specific cycle (e.g., every Monday at 9 a.m.) can be set that will trigger 

the start of the process. 

 Rule: This event type is triggered when the rule evaluates to true. 

 

Intermediate events occur during business processes. They are used to delay the execution of a 

process, for instance, to wait for a message to arrive. Intermediate events are also used to represent 

exception handling. 

 

 None: Can be used to signal a state change in the process. 

 Message: A step in the process is reached where progress depends on a message arriving from a 

participant. When the message arrives, the process can continue.  

 Timer: An intermediate event is triggered based on timer information: A relative time specification 

(“after 7 days”) or an absolute time specification (“next Monday at 9 p.m.”) is useful here. 

 Error: An intermediate error event generates an exception during the normal flow of the process. 

The exception is named with a unique identifier.  

 

Some intermediate events can be attached to the boundary of activities. This event is used to 

represent catching an exception. When an exception is caught, a respective activity is started. 

The meaning of end events is rather obviou. The none marker signals the completion of the process 

or subprocess without additional information. An error end event can be used to raise an exception. It 

can be caught by an intermediate event in the same event context. A termination end event is used to 

immediately terminate all activities of a given process. 

In addition to these event types, there are additional event types that apply to start events, 

intermediate events, and end events. 
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 Link: A link is a mechanism for connecting the end of one process to the start (start trigger event) of 

another. 

 Multiple: This means that there are multiple ways of triggering the process, one of which suffices to 

start it. The attributes of the start event define which triggers apply. 

2.3.3.8.1.2. Activities 

 

An activity is “a work that is performed within a business process” [88]. It can be atomic or non-

atomic. BPMN support three types of activities: Process, Sub-Process and Task, where the latest two 

have a graphical representation. Activities are represented by rectangles (with rounded corners). An 

example of a Task is shown in Figure 41. Task has a TaskType attribute with default value None, but it 

can be one of the following types: Send, Receive, User, Script, Manual, Reference, and Service. 

 

 
Figure 41. An example of a Task 

2.3.3.8.1.3. Gateways 

 

Gateways are defined as “modeling elements that are used to control how Sequence Flow 

interact as they converge and diverge within a Process” [88]. They are used for guiding, splitting and 

merging control flow. The diamond shaped gateways represent decisions, merges, forks, and joins in the 

control flow. A gateway can be thought of as a question that is asked at a point in the process. The 

question has a defined set of alternative answers, which are in effect gates. BPMN have two types of 

Exclusive gateways, the Event-based XOR gateway, which represents a branching point where the 

alternatives are based on an event that occurs at that point in the process flow, and the Data-based 

gateway, where alternatives are chosen based on defined condition. BPMN also has the Inclusive 

gateway where more than one possible alternative is possible, the Parallel gateway where multiple 

parallel paths are possible and the Complex gateways are branches in a Process where more advanced 

behavior can be defined.  

2.3.3.8.1.4. Connecting objects 

 

Connecting objects (i.e., different kinds of lines) connect the flow objects to create a basic 

structure of a business process. A Sequence Flow is represented by a solid arrow and is used to show 

the order that activities will be performed in a business process. A Message Flow is represented by a 

dashed line with an open arrowhead and is used to show the flow of messages between two separate 

business process participants. Associations, represented as dotted lines, are used to associate data 

objects, text, and other artifacts with flow objects. Message flows and sequences flow can be connected 

with other BPMN objects only by following Message Flow and Sequence Flow rules [88]. 

2.3.3.8.1.5. Swimlanes 

BPMN also has a concept called a Pool, which represents a participant in the process. A 

participant can be a specific business entity (e.g., a company) or can be a more general business role 

(e.g., buyer or seller). Graphically, a Pool is a container for partitioning a process from other Pools, 

when modeling business-to-business situations, although a Pool might not need to have any internal 

details (i.e., it can be a “black box”) [88]. Every Pool can have multiple Lanes and they partition Pool‟s 

in order to organize activities within a Pool. They are often used to represent internal roles.  
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2.3.3.8.1.6. Artifacts 

Artifacts are additional information added into a Process. BPMN have three types of artifacts: a 

Data Object, a Group and an Annotation. A data object shows how documents and data are used in a 

Process. Text annotations are used in BPMN to define additional information on a BPMN diagram, and 

they are connected with an association with a specific object. Groups are used to group BPMN elements 

informally. 

 

Table I. BPMN main elements 

Group Element Description 
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Start 

Start Event indicates where a Process will begin. 

 
Intermediate 

Intermediate Event occurs after a process has started and 

before a process ended. 

 
End 

End Event indicates where a process will end. 

A
ct

iv
it
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s 

 
Task 

A Task is an atomic activity that is included within a Process. 

A Task is used when the work in the Process is not broken 

down into a finer level of Process Model detail. 

 
Sub-Process 

Sub-Processes enable for hierarchical Process development. A 

Sub-Process is a compound activity that is included within a 

Process. It is compound in that it can be broken down into a 

finer level of detail (a Process) through a set of sub-activities. 

  
Looped Task 

Looped Task is an activity that is repeated (looped). There are 

two types of loops: Standard and Multi-Instance, where Multi-

Instance are activities that are copied a needed number of 

times. Those activities that are Parallel Multi-Instance have a 

parallel marker placed in the bottom center of the activity 

shape . 

G
a
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w
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Exclusive (Data-

based) 

An exclusive gateway is location within a business process 

where a Sequence Flow can take two or more alternative 

paths. This is basically a “fork in the road” for a process. Only 

one of the possible outgoing paths can be taken when the 

Process is performed. Data-based exclusive gateways create 

alternative paths based on defined conditions (i.e., condition 

expressions), and they can be shown with or without an 

internal “X” marker. 

 
Exclusive (Event-

based) 

This type of Decision represents a branching point in the 

process where the alternatives are based on events that occur 

at that point in the Process, rather than conditions. The Event 

that follows the Gateway Diamond determines the chosen 

path, where the first Event triggered wins. 

 
Inclusive 

Inclusive Gateways are Decisions where there is more than 

one possible outcome. 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

47 

 

 
Complex 

Complex Gateways are Decisions where there are more 

advanced definitions of behavior that can be defined.  

 
Parallel 

Parallel Gateways are places in a Process where multiple 

parallel paths are defined. 
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Sequence Flow 

A Sequence Flow is used to show the order that activities will 

be performed in a Process. 

 
Message Flow 

A Message Flow is used to show the flow of messages 

between two entities that are prepared to send and receive 

them. 

 
Association 

An Association is used to associate data, information and 

artifacts with flow objects. 

S
w
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n
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Pool 

Pools represent Participants in an interactive (B2B) Business 

Process Diagram. 

 
Lane 

Lanes represent sub-partitions for the objects within a Pool. 

A
rt
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Data object 

Data Objects are Artifacts that are used to show how data and 

documents are used within a Process. Data Objects can be 

used to define inputs and outputs of activities. 

 
Group 

Groups are Artifacts that are used to highlight certain sections 

of a Diagram without adding additional constraints for 

performance – as a Sub-Process would. 

 
Text annotation 

Text Annotations are a mechanism for a modeler to provide 

additional information about a Process. They can be connected 

to a specific object on the Diagram with an Association. 

 

2.3.3.8.2. BPMN Metamodel: Abstract Syntax 

 

As our work is based on MDE principles, and as BPMN language does not have a metamodel in 

current specification v1.2 [88], in this section, we first define a set of criteria for choosing an adequate 

BPMN metamodel.  
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2.3.3.8.2.1. Choosing BPMN metamodel for BPMN language 

 

In our research, we need to start from one of the existing well-known proposals for the BPMN 

metamodel [50] [89] [90]. Choosing a metamodel that will satisfy our criteria will start from defining 

those criteria. For choosing an appropriate business process metamodel, we decided to use the criteria 

defined in [78], which are defined from the analysis of 15 specifications the authors of [78] gathered. 

The following list of 13 high-level metamodel concepts reflects criteria from [78]: 

1) Task I/O: The term task is used to refer to basic units of work whose temporal and logical 

relationships are modeled in a process. The input and output (I/O) of these tasks may be modeled 

using simple or XML complex types. 

2) Task Address: The address specifies where or how a service can be located to perform a task. The 

address can be modeled directly via a URI reference of a service or indirectly via a query that 

identifies a service address. 

3) Quality Attributes: When a set of potential services is generated via a query, quality attributes may 

be used to identify the “best” service. 

4) Task Protocol: The protocol defines a set of conventions to control interaction with a service 

performing a task. Web Services use SOAP as a protocol. 

5) Control Flow: The control flow defines the temporal and logical relationships between different 

tasks. Control flow can be specified via directed graphs, block oriented nesting of control 

instructions, or process algebra. 

6) Data Handling: Data handling specifies which variables are used in a process instance and how the 

actual values of these variables are calculated. 

7) Instance Identity: This concept addresses how a process instance and related messages are 

identified. Correlation uses a set of message elements that are unique for a process instance in order 

to route messages to process instances. The generation of a unique identifier which is included in 

the message exchange is an alternative approach. 

8) Roles: Roles provide for an abstraction of participants in a process. Roles are assigned to tasks and 

users to roles. A staff resolution mechanism can then allocate tasks of a process instance to users. 

9) Events: Events represent real-world changes. Respective event handlers provide the means to 

respond to them in a predefined way. 

10) Exceptions: Exceptions or faults describe errors during the execution of a process. In case of 

exceptions, dedicated exception handlers undo unsuccessful tasks or terminate the process instance. 

11) Transactions: ACID transactions define a short-run set of operations that have all-or-nothing 

semantics. They have to be rolled back when one partial operation fails. Business transactions 

represent long-running transactions. In case of a failure, the effects of a business transaction are 

erased by a compensation process. 

12) Graphic Position: The graphical presentation of a business process model contributes to its 

comprehensibility. The attachment of graphical position information can be an explicit part of the 

metamodel. 

13) Statistical Data: Performance analysis of a business process builds on statistical data such as costs 

or duration of tasks. 

 

We extend these criteria with some of the concepts defined in [126] for the area of extension. This 

extension will include rules, policies and vocabularies, and a support for choreography and 

orchestration. The extended metamodeling concepts (adapted from [126]) are: 

 

1) Understandability: denotes the users' effort recognize modeling concepts, language, notation and the 

entire metamodel. Conceptual understandability is a subjective assessment of the modeling 
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method‟s elements and constructs, which may sometimes be in conflict with the model‟s syntactical 

correctness. 

2) Clarity: refers to representational issues such as a structure, a graphical representation, and a general 

readability of a metamodel. Clarity means unambiguity and distinction between concepts. In a 

visual representation, clarity means using the minimal symbolism necessary to represent some 

structural or behavioral property on the diagram (i.e. relevance). 

3) Extensibility: means that a metamodel is extendable with new concepts or some existing concepts 

are further developed. Extensions should not cause revisions of existing definitions, i.e. the 

metamodel should be consistent after extensions. 

4) Adaptability: is the opportunity for specialization and adaptation of modeling concepts and methods 

to different domains and organizations. 

5) Operability: is the ability to implement the modeling framework or the metamodel and to use them 

operationally. 

 

Table II gives an overview of our analysis. A plus sign indicates that a concept mentioned in the 

first column is included in the metamodel of the proposal mentioned in the headings of the columns. A 

minus sign denotes that the concept is not included. 

 

Table II. Overview of BPMN metamodel proposals 

 BPDM [90] BPMN2 [89] Intalio BPMN [50] 

Task I/O + + + 

Task Address + + + 

Quality Attributes - - - 

Protocol + + + 

Control Flow + + + 

Data Handling + + + 

Instance Identity + + - 

Roles + + + 

Events + + + 

Exceptions + + + 

Transactions + + - 

Graphic Position - - - 

Statistical Data + - - 

Understandability - + + 

Clarity - + + 

Extensibility + + - 

Adaptability + - - 

Operability - + - 

 

We now discuss each proposal in more detail. 

 

1) BPDM: OMG‟s Business Process Definition Metamodel (BPMD) [90] is a proposal for the 

metamodel of the BPMN2 language. BPDM provides BPMN with a metamodel, a serialization 

mechanism (XML) and execution semantics. BPMD is composed of elements that use the UML 2 

Infrastructure elements [96]. BPMD can be used to represent other types of business processes 

languages, not only BPMN. The lack of this proposal is a high-complexity and peculiar 

terminology. Through different packages and a lot of abstract concepts, it is hard to follow BPMN 

concepts, while the  terminology used is not clearly mappable to the BPMN concepts. For example, 
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the BPMN Pool is called “processor role”, while a sequence flow is called “Succession”. There are 

also some other unclear concepts, like the difference between “Fact condition” and “Fact change 

condition”. The authors of [90] also claim that Statements and Fact Conditions in the Condition 

package are used to integrate with rule models, but it is not clear in which way this integration can 

be done.  

2) Intalio BPMN: this is not actually an official proposal for a BPMN metamodel, but it is a BPMN 

metamodel used in their BPMS Designer [50]. This metamodel represents a simple subset of BPMN 

concepts used in Intalio‟s tool, and as we can see from Table II it lacks from different metamodeling 

concepts from [78]. This metamodel also does not have any documentation, which hampers its 

extensions and further adaptation for different needs. 

3) BPMN2: OMG‟s Business Process Model and Notation (BPMN) v2.0 Beta 2 [89] is the latest 

proposal for the BPMN metamodel in the BPMN language lead by BEA Systems, IBM, Oracle and 

SAP. This proposal uses an explicit BPMN terminology; it is much simpler than BPDM [90] (much 

less abstract classes are used); and it is clearly mappable to BPEL. This proposal also has an XML-

based serialization for BPMN models (XMI). For example, in this metamodel proposal, the BPMN 

sequence flow element is actually represented with the BPMN concept “SequenceFlow”. For 

extensions, the authors of the proposal defined the BPMN Extensibility Model that allows BPMN 

adopters to extend the specified metamodel in a way that allows them to be still BPMN-compliant.  

From the Table II, we can see that the third proposal (BPMN) supports the most of the 

metamodeling concepts from [78], and for the reasons described above, such as mappability to BPEL, 

easy extensions and XML format, we have choose this metamodel BPMN language.  

2.3.3.8.2.2. BPMN metamodel 

 

In this subsection, we describe in detail the selected metamodel to be used later in our definition 

of the Rule-enhanced Business Process Modeling Language. The BPMN specification [89] is structured 

in layers, where each layer builds on top of and extends lower layers. Here, we discuss the Core 

package of the BPMN metamodel, which includes the most fundamental elements that are required for 

modeling the flow of activities, events, messages, and how they are sequenced. The Core package 

contains four sub-packages (see Figure 42): 

 Common: Those classes are common to multiple packages. 

 Foundation: The fundamental constructs needed for modeling of Processes. 

 Service: The fundamental constructs needed for modeling services and interfaces. 
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Figure 42. Core package 

The Core package in the BPMN metamodel [89] is shown in Figure 43. This core package consists 

of the following elements: 

 Process (concept - class) describes a sequence or flow of activities in an enterprise with the 

objective of carrying work. In BPMN, a Process is depicted as a graph of Flow Elements, which is a 

set of activities, events, gateways and sequence flows that define finite execution semantics (see 

Figure 45). 

 Collaboration is used to describe interactions between two or more business entities or business 

roles, which are represented as Participants within Pools. A Collaboration shows interactions, that 

is, Messages exchanged among Participants that take part in the Collaboration.  A collaboration 

contains two or more Pools, representing the Participants in the Collaboration. The interactions 

among Participants are shown by MessageFlow that connect two Pools.  

 MessageFlow connect either to the Pool boundary or Flow objects within the Pool boundary (they 

are represented as dashed lines with an arrow on the one side, and a circle on the other side). Every 

MessageFlow can have zero or one Message attached (see Figure 43). 

 Pool represents a Participant in a Collaboration. A Participant can be a specific business entity. 

Every Participant has a partner RoleRef attribute (of enumeration type Role) that we have added and 

that defines a business role that the Participant plays in the Collaboration (such as web service – << 

WS >> and BPEL process – << BpelProcess >>). A Pool acts as the container for a Process. 
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Figure 43. Core package in the BPMN metamodel (an excerpt) 

The Common package contains classes that are shared amongst other packages in the Core (see Figure 

44). 

 

 
Figure 44. Classes in the Common package (an excerpt) 

BaseElement is the abstract superclass for all BPMN elements, where ReusableElement is the 

abstract superclass for all BPMN elements that are can be referenced across Definitions. Examples of 

concrete reusable elements include Process, Collaboration, and Message. The Definitions class is the 

outermost containing object for all BPMN elements. It defines the scope of visibility and the namespace 

for all contained elements. The interchange of BPMN files is done through one or more Definitions. The 

Import class is used when referencing external element, either BPMN elements contained in other 

BPMN Definitions or non-BPMN elements. 

The Process package contains classes which are used for modeling the flow of activities, events, 

messages, and how they are sequenced within a Process (see Figure 45). 
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Figure 45. Process package in BPMN metamodel (an excerpt) 

This package consists from different elements (classes) from: 

 A SequenceFlow is used to model the transition of control from one FlowElement (the source) to 

another (the target). It determines the sequencing of FlowNodes within a Process flow. A 

SequenceFlow is represented by a solid line with a black arrow between Tasks. A Sequence Flow can 

optionally define a condition expression, indicating that the „transfer of control‟ will only be available 

if the expression evaluates to true. This expression is typically used when the source of the 

SequenceFlow is a Gateway or an Activity. 

 Activities represent points in a Process flow where work is performed. They are executable elements 

of a BPMN Process. The Activity class is an abstract element. The types of activities that are part of a 

Process are Task, SubProcess, and CallActivity. In Figure 45, we show only the Task element, as the 

most important activity type. A Task is an atomic Activity within a Process flow, which is used when 

the work in the Process cannot be broken down in to a finer level of detail. Generally, an end-user 

and/or applications are used to perform the Task when it is executed. 

 The Process package also includes Events and Gateways. Gateways are used to control how 

SequenceFlows interact as they converge and diverge within a Process. If the flow does not need to be 

controlled, then a Gateway is not needed. The term “Gateway” implies that there is a gating 

mechanism that either allows or disallows passage through the Gateway.  

 An Event is something that “happens” during the course of a Process. These Events affect the flow of 

the Process and usually have a cause or an impact and in general require or allow for a reaction. In 

BPMN, there are different types of start, intermediate and end events [89]. 

 

Activities represent points in a Process flow where work is performed. They are the executable 

elements of a BPMN Process. The Activity class is an abstract element, subclassing from the FlowNode 

(as shown in Figure 46). The Activity class is the abstract super class for all concrete activity types. The 

Performer class defines the resource that will perform or will be responsible for an activity. The 

performer can be specified in the form of a specific individual, a group, an organization role or position, 

or an organization. The CallableElement is the abstract super class of all activities that have been 

defined outside of a Process but which can be called (or reused) from within a Process flow. It 

references an Interface that specifies the external behavior of the element being called. Callable 

Elements are reusable elements, which can be imported and used in other Definitions. 
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Figure 46. Activity classes in BPMN (an excerpt) 

Gateways are used to control how Sequence Flows interact as they converge and diverge within a 

Process. If a flow does not need to be controlled, then a Gateway is not needed. The term “Gateway” 

implies that there is a gating mechanism that either allows or disallows passage through the Gateway-

that is, as Tokens arrive at a Gateway, they can be merged together on input and/or split apart on output 

as the Gateway mechanisms are invoked. A Gateway controls the flow of both diverging and 

converging SequenceFlow. That is, a single Gateway could have multiple input and multiple output 

flows. Thus, it would take two sequential Gateways to first converge and then to diverge the 

SequenceFlow. The Gateway class diagram is shown in Figure 47 and details for the types of Gateways 

(Exclusive, Inclusive, Parallel, Event-Based, and Complex) is defined in Section 2.3.3.8.1.3. 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

55 

 

 
Figure 47. Gateways in BPMN metamodel (an excerpt) 

The Collaboration package contains classes that are used for modeling Collaborations, which is a 

collection of Pools, their interactions as shown by MessageFlow, and may include Processes and/or 

Choreographies (see Figure 48). A Participant is a specific business entity (e.g., a company) or a more 

general business role (e.g., a buyer, seller, or manufacturer) responsible for the execution of the Process 

enclosed in a Pool. Participants may also be defined for pools that do not contain a Process. 

ParticipantMultiplicity is used to define the multiplicity of a Participant. 

 

 
Figure 48. Collaborations package in BPMN metamodel (an excerpt) 

A Choreography defines business a contract between two or more interacting participants. 

While an Orchestration Process exists within a BPMN Pool, a Choreography Process exists between 

Pools. A Choreography Process defines the order in which Choreography Tasks are executed. A 

Choreography Task is an atomic activity and represents a coherent set of Message exchanges. 

Choreography Sub-Processes allow the composition of Choreographies. 

The BPMN metamodel is aimed to be extensible. This allows BPMN adopters to extend the 

specified metamodel in a way that allows them to be still BPMN-compliant. It provides a set of 

Extension elements (see Figure 49), which allows BPMN adopters to attach additional attributes and 

elements to standard and existing BPMN elements. 
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Figure 49. Extensions package in BPMN metamodel (an excerpt) 

A BPMN Extension basically consists of four different elements: 

 

 Extension 

 ExtensionDefinition 

 ExtensionAttributeDefinition 

 ExtensionAttributeValue 

 

The core elements of an Extension are the ExtensionDefinition and ExtensionAttributeDefinition. 

The latter defines a list of attributes that can be attached to any BPMN element. The attribute list 

defines the name and type of the new attribute. This allows BPMN adopters to integrate any metamodel 

into the BPMN metamodel and reuse already existing model elements. The ExtensionDefinition itself 

can be created independent of any BPMN element or any BPMN definition.  

In order to use an ExtensionDefinition within a BPMN model definition (Definitions element), the 

ExtensionDefinition must be associated with an Extension element which binds the ExtensionDefinition 

to a specific BPMN model definition. The Extension element itself is contained within the BPMN 

element Definitions, and therefore it is available to be associated with any BPMN element making use 

of the ExtensionDefinition. 

Every BPMN element which subclasses the BPMN BaseElement can be extended by additional 

attributes. This works by associating a BPMN element with an ExtensionDefinition which was defined 

at the BPMN model definitions level (element Definitions). Additionally, every “extended” BPMN 

element contains the actual extension attribute value. The attribute value, defined by the element 

ExtensionAttributeValue contains the value of type Object. It also has an association to the 

corresponding attribute definition. 

Expressions are used in many places within BPMN to extract information from the model (see 

Figure 50). The most common usage is when modeling decisions, where conditional expressions are 

used to direct the flow along specific paths based on some criteria. BPMN supports underspecified 
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expressions, where the logic is captured as natural-language descriptive text. It also supports formal 

expressions, where the logic is captured in an executable form using a specified expression language.  

The Expression class is used to specify an expression using natural-language text. These expressions 

are not executable, while the FormalExpression class is used to specify an executable expression using 

a specified expression language.  

 

 
Figure 50. Expressions in BPMN metamodel (an excerpt) 

An Event is something that “happens” during the course of a Process. The Event package is shown in 

and in Figure 51.  

 
Figure 51. Events in BPMN metamodel (an excerpt) 

The Event Definition BPMN metamodel package which represents types of events is shown in Figure 

52. These Event Definition concepts are described in Section 2.3.3.8.1.1 



Milan Milanović 

 

 

58 

 

 
Figure 52. Event definitions in BPMN metamodel (an excerpt) 

An important requirement in process modeling is ability to model the items that are created and 

manipulated during the execution of a process (see Figure 53). Basically, these items represent data 

objects in a process model, and in BPMN 2.0, data items (ItemAwareElement) are represented with 

following classes: Data Objects, ItemDefinition, Properties, Data Inputs, Data Outputs, Messages, Input 

Sets, Output Sets, and Data Associations. 

 Item-aware elements are used in a BPMN 2.0 process to (optionally) store items during process 

execution, just like a variable in programming languages. A structure of an Item-aware element is 

defined by using an ItemDefinition.  

 
Figure 53. Item-aware elements in BPMN metamodel 

Data objects are item-aware elements that are contained in a process, and represented graphically in a 

process diagram (see Figure 54), while DataObjectReference is used to reference to a data object in 

multiple points in a diagram. 
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Figure 54. A DataObject in BPMN metamodel 

DataStore is used to enable retreiving and storing infromations for activities, and they are persistant 

beyond the scoope of a process. DataStore is represented graphically in a process diagram as shown in 

Figure 55. DataStoreReference is used to reuse the same DataStore in a process diagram. 

 

 
Figure 55.A  DataStore in BPMN metamodel 

 

DataInput‟s are used in a process to provide or produce data for an activity or a process. DataInput 

element is an item-aware element represented graphically on a process diagram to show the inputs of an 

activity (see Figure 56a). DataOutput‟s are similar to DataInput‟s, but they are used to show outputs of 

an activity. They are shown graphicall in Figure 56b. 

 

            
a) DataInput b) DataOutput 

Figure 56. DataInput and DataOutput elements in BPMN metamodel 

Data associations are used to move data between data objects, and by doing this to fill activities input or 

to push the output values from an executed activity to an output data object. Data associations are used 

to push or pull data from item-aware elements, and they have one or more sources and a target. Data 

associations are represented by a dashed line with an arrow (see Figure 57). 

 

 
Figure 57. A DataAssociation in BPMN metamodel 

The DataInputAssociation is used to association an Item-aware element with a DataInput from an 

activity, while DataOutputAssociation is used to associate appropriate DataOutput form an activity 

with an Item-aware element. In addition, DataAssociation‟s can be associated to a Sequence flow, and 

this replaces two data associations, one from an Item-aware element to an data object, and another from 

an data object to an Item-aware element. 

 More details about data representation in BPMN 2.0, can be found in BPMN 2.0 OMG 

specification [241]. 

2.3.3.9. Business Process Modeling Languages Summary 

 

In this section, we show an evaluation of business process modeling languages shown in Section 

2.3.2. In Table III, we list an integrated and extended version of the evaluation of business process 

modeling languages from [63]. The first column describes if a language has a metamodel, the second 

column shows if the language has a graphical notation, the third column show if the language has a 
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translation into executable code, the fourth column show if the language has a tool(s) to work with it, 

and the last column shows if the language support any types of rules. 

 

Table III. Summary of BPML‟s (adapted from [63]) 

 Meta-model Notation Execution 

language 

Tool(s) Rule support 

Petri Nets + + PNML [11] DaNAMiCS 

[21], Renew 

[65], Petri net 

Kernel (PNK) 

[101] 

- 

Event Driven 

Process Chain 

(EPC) 

+ + EPML [79] ARIS Toolset 

[3], 

ADONIS [2] 

+/- 

Integrated 

DEFinition 

Method 3 

(IDEF3) 

- + - Procap [106] - 

UML 2.0 

Activity 

Diagrams (AD) 

+ + WS-BPEL 

[49] 

MagicDraw 

UML [74], 

Microsoft 

Visio [83], 

MDT-

UML2Tools 

[77] 

- 

Agent Object-

Relationship 

Modeling 

Language 

(AORML) 

+ + JADE [8] Integrated 

Business 

Process Editor 

[129] 

Reaction rules 

Let‟s Dance - + - The Oryx 

Editor [98] 

- 

iBPMN - + +/- The Oryx 

Editor [98] 

+/-  

(Generic 

support with 

Rule Event) 

BPEL4Chor - + WS-BPEL 

[49] 

The Oryx 

Editor [98] 

- 

Business 

Process 

Modeling 

Notation 

(BPMN) 

+/- + WS-BPEL 

[49] 

Microsoft 

Visio [83], 

Intalio STP 

BPMN 

Modeler [50], 

The Oryx 

Editor [98] 

+/-  

(Generic 

support with 

Rule Event) 

A detailed evaluation of business process modeling languages can be found in [63] [70]. 
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2.4. Business rules 
 

In this section, we describe basic business rules concepts, business rules categories, as well as a 

concrete business rule language, called REWERSE I1 Rule Markup Language (R2ML).  

 

2.4.1. Business rules concepts 
 

Business rule can be defined as “a statement that aims to influence or guide behavior and 

information in an organization” [125]. A rule also can be defined from two main perspectives, 

according to [140], from the information system perspective, where a business rule is a fact in a system 

stored as data and the constraint of values of such facts, and from the business perspective where a 

business rule includes some behavior of people in a system. From the business perspective, a business 

rule is defined as “guidance that there is an obligation concerning conduct, action, practice, or 

procedure within a particular activity or sphere” [140]. From the information system perspective, “a 

business rule is a statement that defines or constrains some aspect of the business” [140]. 

Business rules can be categorized according to their structure or source [125], as: Mandates 

(policies that must be followed, such as payment of taxes), Guidelines (rule that may or may not apply) 

and Policies (standards that should be applied to adhere some acceptable behavior). 

There are different categories of rules, such as [142]: 

 Integrity rules also known as (integrity) constraints consist of a constraint assertion, 

which is a sentence in a logical language such as first-order predicate logic or OCL. For 

example, the start date/time of a service must be later than the reservation date/time. 

 Derivation rules where conditions resulting in conclusions. For example, a give 10% 

discount to a customer if he spends more than 1000$ per month. 

 Production rules have a condition and a produced action, where condition is a logical 

formula. A produced action can execute an action. This rule type is important as it can be 

used to represent derivation or reaction rules. An example of the derivation rules is, if 

reservation date of a rental is 5 days in advance then give rental a 10 % discount. 

 Reaction rules consist of a mandatory triggering event expression, an optional condition, 

and a produced action or a post-condition (or both). There are two types of reaction rules: 

those that do not have a post-condition, which are the well-known Event-Condition-

Action (ECA) rules, and those that do have a postcondition, which we call ECAP rules. 

An example of reaction rule is, when an order is received, if a payment type is a “credit 

card” then ask for a credit card number. 

 Transformation rules define change of state, for example, invoice type can be changed 

from “temporary” to “definitive”, but not opposite. 

 

Business rules can be mainly characterized by the following elements [130]: 

 Rules are important part of a business model. 

 Rules are separated from business processes, not contained in them.  

 Rules build of facts, while facts are expressed by terms. These terms “are used to express 

business concepts, while facts make assertions about these concepts, and rule constraints 

these facts. 

 Rules should be defined by a business people.  

 Ability to change rules is fundamental for business adaptability.  

 Business is documented through rules. 

 

Business rules are expressed by Business rule languages. Business rules can also be expressed in 

a natural language or in any formal language, such as: SWRL, R2ML, OCL, RuleML, etc. One type of a 
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business rules are business rule markup languages. Business rule markup languages are usually based 

on some formal logic with expressive power [125]. They define what is required to take place, rather 

then how it should be accomplished. Some expect that rule markup languages will be the primary 

driving force for the widespread use of rules both on the Web and in distributed systems. They allow for 

deploying, executing, publishing and communicating rules on the Internet. They may also play the role 

of a lingua franca for exchanging rules between different systems and tools. They may be used, for 

example, to express derivation rules for enriching Web ontologies by adding definitions of derived 

concepts or for defining data access permissions; to describe and publish the reactive behavior of a 

system in the form of reaction rules; and to provide a complete XML-based specification of a software 

agent [143]. In a narrow sense, a rule markup language is concrete (XML-based) rule syntax. In a 

broader sense, it should have an abstract syntax as a common basis for defining various concrete 

languages serving different purposes. The main purpose of a rule markup language is to permit reuse, 

interchange and publication of rules. 

 

2.4.2. Business rule languages 
 

There are several rule languages and specification standards and they are mainly developed in 

two standardization streams. The first stream is lead by WWW consortium (W3C), which is responsible 

for Semantic Web and ontology languages, such as Rule Interchange Format (RIF) [38] and also there 

are Semantic Web Rule Language (SWRL) [46] and RuleML [12]. RIF is an official W3C 

Recomendation that defines a standard for sharing rules. That is, RIF is expressive enough to represent 

concepts of various rule languages, and it define that one should also develop a (two-way) 

transformation between RIF and any rule language that should be shared by using RIF. RIF include 

concrete XML serialization format for model-based languages such as RuleML, PRR and SBVR. 

Besides RuleML, the REWERSE I1 Rule Markup Language (R2ML) is well-known RIF 

implementation proposal. RuleML represents an initiative for creating a general rule markup language 

that should support different type of rules and different semantics. It is conceptualized to capture the 

hierarchy of rule types (reaction rules, derivation rules and integrity constraints). RuleML is built on 

logic programming paradigm of first order logic (i.e., predicate logic). In the tradition of logic 

programming that follows RuleML, research is focused on computable interpretations of predicate 

logic, by exploring a great number of semantic extensions and variations. SWRL is actually a 

combination of OWL and RuleML languages and it is used to reason over Semantic Web ontologies.  

This language is very similar to RuleML, and its rules are of the form of an implication between an 

antecedent (body) and a consequent (head). The intended meaning can be read as "whenever the 

conditions specified in the antecedent hold, then the conditions specified in the consequent must also 

hold". Both the antecedent (body) and consequent (head) consist of zero or more atoms. Multiple atoms 

are connected with the conjunction operator. We choosed to use R2ML language because it is also a 

rule modeling language, it does have XML concrete syntax and it can represent four main types of rules 

(Integrity, Derivation, Production and Reaction rules).  

The second stream managed by Object Management Group (OMG), and it is primarily focused 

on object-oriented, business rules and process languages standards. Currently, there are three rule 

standardization efforts for Semantics of Business Vocabulary and Business Rules (SBVR) [95], 

Production Rule Representation [91] and Object Constraint Language [94]. SBVR include constructs 

for rule modeling vocabulary represented in semi-natural language. PRR is currently in finalization 

stage and it is designed for common high-level product rule representation. In UML, various model 

elements such as classes or state machines can be annotated by logical constraints defined by using 

OCL. In this way, UML models constrained by OCL expressions are more accurate and complete. 
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2.4.3. REWERSE I1 Rule Markup Language (R2ML) Language 
 

Prof. Dr. Gerd Wagner and Dr. Adrian Giurca from the Institute of Informatics at Brandenburg 

University of Technology at Cottbus, Germany, have been working on the development of R2ML 

language prior to the version 0.2. From the version 0.2 to the actual version 0.5 (January 2009), Prof. 

Dr. Dragan Gašević from Athabasca University in Canada, and the author of this thesis have been 

involved in the R2ML development and implementation, as well. 

The chosen approach for R2ML development is based the MDE principles [85]. The R2ML 

textual concrete syntax is defined in the form of an XML Schema. This schema is based on the R2ML 

MOF-based meta-model. From the perspective of the MDA, rules can be considered at three different 

abstraction levels (shown Figure 58). 

 

 
Figure 58. The concepts of rules at three different abstraction levels: computation independent (CIM), 

platform-independent (PIM) and platform-specific (PSM) modeling [142] 

 

At the (‟computation-independent‟) business domain level (CIM), rules are statements that 

express (certain parts of) a business/domain policy (e.g., defining terms of the domain language) in a 

declarative manner, typically using a natural language or a visual language. An example of such rule is: 

The driver of a rental car must be at least 18 years old. At the platform-independent operational design 

level (PIM), rules are formal statements, expressed in some formalism or computational paradigm, 

which can be directly mapped to executable statements of a software system. Examples of rule 

languages at this level are SQL:1999 [127] and OCL 2.0 [94]. At the platform-specific implementation 

level (PSM) rules are statements in a language of a specific execution environment, such as Oracle 10g 

views, Jess 3.4, XSB 2.6 Prolog or the Microsoft Outlook 6 Rule Wizard. 

The R2ML language try to address all the requirements specified in RIF document given in [38] 

in order to provide a general markup language for sharing Web rules.  

2.4.3.1. R2ML Metamodel and concrete XML-based syntax 

 

The R2ML rule language is defined by a metamodel, by using the MOF metamodeling language 

[110] [142]. It can represent different rule constructs, i.e. it captures the most important types of rules. 

The actual version 0.5 (January 2009) supports the following types of rules: derivation rules, integrity 

rules (constraints), reaction rules, production rules and transformation rules (in early development). 
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 In R2ML, rules are grouped into rule sets, which are also grouped into a rule base. Every rule 

base can have multiply vocabularies, such as RDFS, OWL or UML (see Figure 59).  

 
Figure 59. RuleBase in R2ML metamodel 

Every type of rule in R2ML is contained in an appropriate rule set. Therefore, R2ML have rule sets for 

every rule type , as shown in Figure 60. 

 
Figure 60. RuleSets in R2ML metamodel 

2.4.3.1.1. Integrity rules 

 

R2ML supports two kinds of integrity rules: alethic and deontic integrity rules (see Figure 61). 

An alethic integrity rule can be expressed with a phrase, such as “it is necessarily the case that”, 

whereas a deontic one can be expressed with phrases, such as “it is obligatory that” or “it should be the 

case that” [143]. 

 

 
Figure 61. Integrity rules in the R2ML meta-model 
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A constraint assertion is a logical sentence that must necessarily, or that should, hold in all evolving 

states and state transition histories of the discrete dynamic system to which it applies. An integrity rule 

cannot have free variables, i.e. all variables from this formula are quantified. An example of integrity 

rule on CIM level is (from the EU-Rent case study[32]): if rental is not a one way rental then return 

branch of rental must be the same as pick-up branch of rental. This rule in R2ML XML concrete syntax 

is shown in Figure 62. 

 
<r2ml:AlethicIntegrityRule r2ml:id="IR001"> 

   <r2ml:constraint> 

       <r2ml:UniversallyQuantifiedFormula> 

          <r2ml:ObjectVariable r2ml:name="r1" r2ml:classID="Rental"/> 

          <r2ml:Implication>  

               <r2ml:antecedent> 

               <r2ml:NegationAsFailure> 

                    <r2ml:ObjectClassificationAtom r2ml:classID="OneWayRental"> 

                         <r2ml:ObjectVariable r2ml:name="r1"/> 

          </r2ml:ObjectClassificationAtom> 

      </r2ml:NegationAsFailure> 

              </r2ml:antecedent>     

              <r2ml:consequent> 

     <r2ml:EqualityAtom> 

          <r2ml:ReferencePropertyFunctionTerm  

                          r2ml:referencePropertyID="returnBranch"> 

                            <r2ml:contextArgument> 

                   <r2ml:ObjectVariable r2ml:name="r1"/> 

                </r2ml:contextArgument> 

          </r2ml:ReferencePropertyFunctionTerm> 

          <r2ml:ReferencePropertyFunctionTerm  

                          r2ml:referencePropertyID="pickupBranch"> 

                <r2ml:contextArgument> 

                    <r2ml:ObjectVariable r2ml:name="r1"/> 

                </r2ml:contextArgument> 

          </r2ml:ReferencePropertyFunctionTerm> 

    </r2ml:EqualityAtom> 

              </r2ml:consequent> 

           </r2ml:Implication> 

       </r2ml:UniversallyQuantifiedFormula> 

   </r2ml:constraint> 

</r2ml:AlethicIntegrityRule> 
 

Figure 62. R2ML XML representation of an integrity rule 

2.4.3.1.2. Derivation rules 

 

Derivation Rules in R2ML have “conditions” and “conclusions” (see Figure 63), which are both 

logical formulas. In R2ML, the conditions of a derivation rule are AndOrNafNegFormula. 

Conclusions are restricted to a literal conjunction of atoms (see Figure 64).  

 
Figure 63. Derivation rules in the R2ML meta-model 
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Figure 64. LiteralConjuction of R2ML atoms 

An example of derivation rule on the CIM level is: the discount for a customer buying a product is 7.5 

percent if the customer is premium and the product is luxury. This rule in the R2ML XML concrete 

syntax is shown in Figure 65. 
<r2ml:DerivationRule r2ml:id="DR004"> 

   <r2ml:conditions> 

      <r2ml:ObjectClassificationAtom r2ml:classID="PremiumCustomer"> 

         <r2ml:ObjectVariable r2ml:name="customer" r2ml:classID="Customer"/> 

      </r2ml:ObjectClassificationAtom> 

      <r2ml:ObjectClassificationAtom r2ml:classID="LuxuryProduct"> 

         <r2ml:ObjectVariable r2ml:name="product" r2ml:classID="Product"/> 

      </r2ml:ObjectClassificationAtom> 

      <r2ml:AssociationAtom r2ml:associationPredicateID="buy"> 

         <r2ml:objectArguments> 

            <r2ml:ObjectVariable r2ml:name="customer"/> 

               <r2ml:ObjectVariable r2ml:name="product"/> 

         </r2ml:objectArguments> 

      </r2ml:AssociationAtom> 

   </r2ml:conditions> 

   <r2ml:conclusion> 

      <r2ml:AttributionAtom r2ml:attributeID="discount"> 

         <r2ml:subject> 

            <r2ml:ObjectVariable r2ml:name="customer"/> 

         </r2ml:subject> 

         <r2ml:value> 

            <r2ml:TypedLiteral r2ml:datatype="xs:decimal"  

              r2ml:lexicalValue="7.5"/> 

         </r2ml:value> 

      </r2ml:AttributionAtom> 

   </r2ml:conclusion> 

</r2ml:DerivationRule>  
Figure 65. R2ML XML representation of a derivation rule 

2.4.3.1.3. Production rules 

 

The conditions and post-conditions of production rules are AndOrNafNegFormulas (see 

Figure 66). A production rule may execute a ProgramActionExpression, as shown in Figure 88. 

While OCL can be used in a platform-independent production rule language to specify conditions on an 

object-oriented system state, the UML Action Semantics can be used to specify produced actions. 
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Figure 66. Production rules in the R2ML meta-model 

An example of a production rule on the CIM level is: if the order value is greater than 1000 and the 

customer type is not gold then give a 10% discount. This rule in the R2ML XML concrete syntax is 

shown in Figure 67. 
<r2ml:ProductionRule r2ml:id="PR001" > 

     <r2ml:conditions> 

           <r2ml:qf.Conjunction> 

    <r2ml:DataPredicateAtom r2ml:dataPredicateID="swrlb:greaterThan"> 

           <r2ml:dataArguments> 

                <r2ml:AttributeFunctionTerm r2ml:attributeID="orderValue"> 

         <r2ml:contextArgument> 

     <r2ml:ObjectVariable r2ml:name="order" r2ml:classID="srv:Order"/> 

         </r2ml:contextArgument> 

                </r2ml:AttributeFunctionTerm> 

                <r2ml:TypedLiteral r2ml:lexicalValue="1000" r2ml:type="xs:positiveInteger"/> 

           </r2ml:dataArguments> 

    </r2ml:DataPredicateAtom> 

    <r2ml:DataPredicateAtom r2ml:dataPredicateID="swrlb:equal" r2ml:isNegated="true"> 

            <r2ml:dataArguments> 

       <r2ml:AttributeFunctionTerm r2ml:attributeID="customerRating"> 

           <r2ml:contextArgument> 

     <r2ml:ObjectVariable r2ml:name="order" r2ml:classID="srv:Order"/> 

           </r2ml:contextArgument> 

       </r2ml:AttributeFunctionTerm> 

       <r2ml:TypedLiteral r2ml:lexicalValue="gold" r2ml:type="xs:string"/> 

            </r2ml:dataArguments> 

    </r2ml:DataPredicateAtom> 

           </r2ml:qf.Conjunction> 

     </r2ml:conditions> 

     <r2ml:producedAction> 

       <r2ml:AssignActionExpression r2ml:propertyID="srv:discount"> 

          <r2ml:contextArgument> 

   <r2ml:ObjectVariable r2ml:name="order" r2ml:classID="srv:Order"/> 

         </r2ml:contextArgument> 

         <r2ml:TypedLiteral r2ml:lexicalValue="10" r2ml:type="xs:positiveInteger"/> 

  </r2ml:AssignActionExpression> 

     </r2ml:producedAction> 

</r2ml:ProductionRule>  
Figure 67. R2ML XML representation of a production rule 

2.4.3.1.4. Reaction rules 

 

In R2ML, a reaction rules consist of a mandatory triggering event expression, an optional 

condition, and a triggered event expression or a post-condition (or both), which are roles of type 

EventExpression, AndOrNafNegFormula and AndOrNafNegFormula, respectively, as 

shown in Figure 68. While the condition of a reaction rule is exactly as the condition of a derivation 

rule, a quantifier-free formula, the post-condition is restricted to a conjunction of possibly negated 

atoms and it may be required to be satisfied. 
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Figure 68. Reaction rules in the R2ML meta-model 

A reaction rule consists of the following components: 

 triggeringEventExpr and triggeredEventExpr is an R2ML 

EventExpression, which is either atomic or composite. 

 conditions are represented as a collection of AndOrNafNegFormula, and as 

postcondition. 

 

An example of reaction rule on CIM level is: if customer returns a car and the car has more than 

5000km from the last service then send the car to the service. This rule in R2ML XML concrete syntax 

is shown in Figure 69. 
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<r2ml:ReactionRule r2ml:id="ECA001"> 

   <r2ml:triggeringEventExpr> 

 <r2ml:MessageEventExpression r2ml:eventType="alert"  

                                    r2ml:startTime="2006-03-21T09:00:00"  

                                    r2ml:duration="P0Y0M0DT0H0M0S"  

                                    r2ml:sender="http://www.mywebsite.org"> 

    <r2ml:arguments> 

        <r2ml:ObjectVariable r2ml:name="car" r2ml:class="RentalCar"/> 

   <r2ml:ObjectVariable r2ml:name="customer" r2ml:class="Customer"/> 

    </r2ml:arguments> 

 </r2ml:MessageEventExpression> 

   </r2ml:triggeringEventExpr> 

   <r2ml:conditions> 

 <r2ml:DatatypePredicateAtom r2ml:datatypePredicate="ge"> 

      <r2ml:dataArguments> 

       <r2ml:AttributeFunctionTerm r2ml:attribute="srv:lastservice"> 

     <r2ml:contextArgument> 

             <r2ml:ObjectVariable r2ml:name="rentalCar"  

                                             r2ml:class="srv:RentalCar"/> 

     </r2ml:contextArgument> 

  </r2ml:AttributeFunctionTerm> 

  <r2ml:AttributeFunctionTerm r2ml:attribute="odometer_reading"> 

     <r2ml:contextArgument> 

        <r2ml:ObjectVariable r2ml:name="rentalCar"  

                                             r2ml:class="srv:RentalCar"/> 

     </r2ml:contextArgument> 

  </r2ml:AttributeFunctionTerm> 

  <r2ml:TypedLiteral r2ml:datatype="xs:positiveInteger"  

                                r2ml:lexicalValue="5000"/> 

    </r2ml:dataArguments> 

 </r2ml:DatatypePredicateAtom> 

    </r2ml:conditions> 

    <r2ml:triggeredEventExpr> 

 <r2ml:InvokeActionExpression r2ml:operation="service"> 

    <r2ml:contextArgument> 

  <r2ml:ObjectVariable r2ml:name="rentalCar" r2ml:class="srv:RentalCar"/> 

    </r2ml:contextArgument> 

 </r2ml:InvokeActionExpression> 

    </r2ml:triggeredEventExpr> 

</r2ml:ReactionRule>  
Figure 69. R2ML XML representation of a reaction rule 

2.4.3.1.5. R2ML Vocabulary 

 

R2ML language has a basic vocabulary that is defined to support basic rule constructs: 

 Vocabulary for classification (basic): Vocabulary, VocabularyEntry, Predicate, 

Property, Type, DatatypePredicate, Attribute, Class, Datatype and 

ObjectName. 

 Vocabulary for functional constructs
4
: EnumerationDatatype, GenericFunction, 

DatatypeFunction, Operation, DataOperation and ObjectOperation. 

 Vocabulary for relational constructs
5
: GenericPredicate and AssocationPredicate. 

 

Figure 70 shows the definition of elements for modeling vocabularies in the R2ML meta-model. All 

the previously described constructs are shown in this figure (blue classes are of the R2ML vocabulary 

and yellow classes are abstract classes). 

                                                   
4 Functional constructs describe functional characteristics in a vocabulary; they represent operations that can be executed by 

some entity or can be used to translate some vocabulary elements (set) into other elements (set).  
5 Relational constructs defines relations between one or more vocabulary elements - if exists some relation between two 

vocabulary elements, then certain predicate will have true value. In opposite it will be false. 
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Figure 70. Vocabulary in the R2ML meta-model 

2.4.3.1.5.1. Objects, Data, Variables 

 

R2ML has three types of terms: GenericTerm, ObjectTerm and DataTerm. The concept 

of ObjectTerm, shown in Figure 71 is used for modeling variables that can be instantiated by object 

values and object constants. ReferencePropertyFunctionTerm is an object term that is used to 

model relations of a type similar to association ends in UML. ObjectOperationTerm is an object 

term that is used to model an operation on contextual argument. 
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Figure 71. ObjectTerm in the R2ML meta-model 

DataTerm is used to represent primitive data types and data values (see Figure 72). There are three 

types of data terms: DataVariable, which represents a variable, DataLiteral, which represents a 

value and DataFunctionTerm. DataFunctionTerm can be of three different types: 

 DatatypeFunctionTerm represents arithmetic built-ins; 

 AttributeFunctionTerm represents an attribute function (a function, which returns 

attribute value for an object); 

 DataOperationTerm represents a user-defined function (method, for instance) and takes 

DataTerm or ObjectTerm as parameters. 
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Figure 72. DataTerm in the R2ML meta-model 

A GenericTerm (see Figure 73) is used for modeling variables that may, or may not, have a data 

type (GenericVariable), constants (GenericEntityName), and generic functions 

(GenericFunctionTerm). 

 

 

Figure 73. GenericTerm in the R2ML meta-model 

R2ML supports three types of variables: GenericVariable, ObjectVariable and 

DataVariable (see Figure 74). 
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Figure 74. Variables in the R2ML meta-model 

2.4.3.1.5.2. Atoms 

 

The basic constituent of a rule is an atom. R2ML defines a meta-model for atoms. The R2ML 

atoms are compatible with all important concepts of OWL, SWRL and RuleML. All atoms from the 

R2ML meta-model are presented on Figure 75. 

 
Figure 75. Atoms in the R2ML meta-model 

An object classification atom (see Figure 76) refers to a class and consists of an object term. 

 

Figure 76. ObjectClassificationAtom in the R2ML meta-model 

An object description atom (see Figure 77) refers to a class as a base type, and to zero or more classes 

as categories. It consists of a number of slots (attribute data slot and reference property object slot). An 

instance of such atom refers to one particular object. 
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Figure 77. ObjectDescriptionAtom in the R2ML meta-model 

An attribution atom (see Figure 78) consists of an object term as ”subject”, and a data term as ”value”. 

 
Figure 78. AttributionAtom in the R2ML meta-model 

A reference property atom (see Figure 79) associates object terms as ”subjects” with other object 

terms as ”objects”. In order to directly support common fact types of natural language, it is important to 

have n-ary predicates (for n > 2). 

 
Figure 79. ReferencePropertyAtom in the R2ML meta-model 

An association atom (see Figure 80) is constructed by using an n-ary predicate as an association 

predicate, a collection of data terms as “data arguments”, and a collection of object terms as “object 

arguments”. 
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Figure 80. AssociationAtom in the R2ML meta-model 

Both equality atom and inequality atom (see Figure 81) are composed of two or more object terms. 

 
Figure 81. EqualityAtom and InequalityAtom in the R2ML meta-model 

A data classification atom (see Figure 82) consists of a data term and refers to a data type. 

 

Figure 82. DataClassificationAtom in the R2ML meta-model 

R2ML metamodel also include concept of datatype predicate atom, which refers to a data term and 

datatype predicate (see Figure 83). 

 
Figure 83. DatatypePredicateAtom in the R2ML meta-model 

 

GenericAtom consists of a predicate (which can be of type: 

ObjectClassificationPredicate, AttributionPredicate, 

AssociationPredicate, ReferencePropertyPredicate, EqualityPredicate, 

InequalityPredicate, DatatypePredicate and DataClassificationPredicate) 

and arguments, as shown in Figure 84. 
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Figure 84. GenericAtom in the R2ML meta-model 

2.4.3.1.5.3. Formulas 

 

R2ML provides two abstract concepts for formulas: the concept of AndOrNafNegFormula 

(see Figure 85), which represents the most general quantifier-free logical formula with weak and strong 

negations, and the concept of LogicalFormula (see Figure 86), which corresponds to a general first 

order formula. 

 

Figure 85. AndOrNafNegFormula in the R2ML meta-model 

R2ML supports two kinds of negation (as shown in Figure 86). The distinction between weak and 

strong negation is used in several computational languages (like SQL [127] and OCL [94]), and it is 

presented in [141]. A weak negation captures the absence of positive information, while a strong 

negation captures the presence of explicit negative information. The weak negation captures the 

computational concept of negation-as-failure (or closed-world negation). 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

77 

 

 
Figure 86. LogicalFormula in the R2ML meta-model 

2.4.3.1.5.4. Actions 

 

R2ML EventExpression concept include following elements: 

AtomicEventExpression, AndNotEventExpression, SequenceEventExpression, 

ParallelEventExpression and ChoiceEventExpression (see Figure 87). These elements 

are used to represent composite actions, like sequential or parallel actions, while 

AndNotEventExpression contains two EventExpression‟s A, B such that “A occurs and B 

does not.” 

 
Figure 87. Event expressions in the R2ML meta-model 

R2ML supports five types of actions (ProgramActionExpression, corresponds to the OMG PRR 

actions [91]): InvokeAction, AssignAction, CreateAction, DeleteAction and 

SOAPAction (see Figure 88). These actions create state changes in the rule system working memory 

(i.e., change facts in the working memory). 
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Figure 88. Actions in the R2ML meta-model 

 InvokeActionExpression refers to an UML Operation and contains a list of 

arguments. This action invokes an operation with a list of arguments. 

 UpdateActionExpr refers to an UML Property and contains a DataTerm. This 

action assigns a value to a property.  

 AssertActionExpression refers to an UML Class and to a Slot as a 

parameter. Assert action is used to create a new instance in working memory. 

 RetractAction refers to an UML Class and this action is used to remove instances 

from working memory. 

 

As shown in Figure 87, the AtomicEventExpression can have an event type. These event types 

can be time or message-related, as shown in Figure 89. 
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Figure 89. Vocabulary events in the R2ML metamodel 

2.4.3.2. UML-Based Rule Modeling Language (URML) 

 

UML-Based Rule Modeling Language (URML) represents one possible implmentation of the 

R2ML graphical notation [72]. URML is developed as an extension of the UML metamodel to be used 

for rule modeling. The name is defined in such a way, as the URML graphical notation is defined in 

such a way to remind completely of the graphical notation of the UML class models; just with an 

addition that rules are defined on top of such models. A previous implementation of URML in the 

Strelka tool [73], implemented as both Fujaba and Eclipse plug-ins, is using a different implementation 

than it is followed in the implementation presented in this theses later on. Namely, Strelka is designed 

as a heavyweight UML profile through the extension of the UML2 metamodel, while in this thesis we 

will introduce R2ML graphical syntax as an implementation of the R2ML metamodel presented in the 

previous section (see section 3.1).  

2.4.3.2.1. URML graphical notation 

 

All types of rules in URML are depicted using circles with identifiers, except integrity rules. 

Integrity rules are represented as OCL invariants on URML vocabulary models. Conditions are depicted 

as arrows from a conditioned model element to a rule circle (i.e.,  ). A condition element can be one 

of the UML classifiers: class, association, and association end. A negated condition is depicted using a 

crossed arrow (i.e.,  ). Conditions can also be defined by using OCL filters, that is, OCL expressions 

that further constrain the conditions defined by means of UML classifiers (e.g., price = 

cvar.wantedPrice). A post-condition is depicted as an outgoing arrow with a double head ( , in order 

to denote a state change) from the rule circle to the post-condition classifier (class, association or 

association end). An instance of the EventCondition class is depicted as an incoming arrow ( ) from 

the message type or fault message type class to the rule circle. An event condition refers to an object 

variable, which represents an instance of the message event class (<<message event type>>) and 

corresponds to a annotation of a event condition arrow with the variable name. A rule action has a 

message event type as an output message or fault message type as an out-fault. In the URML visual 

notation, the RuleAction class is depicted as a double headed outgoing arrow ( ) from the rule circle 

to the message type class, fault type class or action. A rule action refers to an object variable, which 

represents an instance of the MessageEventType class and corresponds to the annotation of the action 
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arrow with the variable name. A rule action arrow is annotated with an action type (A for the Assert 

action, R for the Retract action, U for the Update action, and I for the Invoke action). 

We show elements of the URML syntax in Table IV. 

 

Table IV. URML‟s concrete graphical notation 

Stereotype UML 2.0 metaclass Graphical notation 

DerivationRule Class 

 
ProductionRule Class 

 

ReactionRule Class 

 

RuleCondition Class, Association, 

AssociationEnd 
  

Negated Condition Class, Association, 

AssociationEnd 
  

PostCondition Class, Association, 

AssociationEnd 

 

EventCondition Class, Association, 

AssociationEnd 

 

RuleAction Class, Association, 

AssociationEnd 

 

 

2.4.3.2.2. Modeling reaction rules 

 

Reaction rules in URML are modeled by an atomic triggering event, denoted by a class with 

<<event> stereotype. In Figure 90, we show an example of a URML reaction rule. This reaction rule, is 

triggered by a message inquiring about the price of flights, and returns a message that carries the price 

information if a certain flight price is equal to the wanted flight price. The URML class that represents 

the input message (CheckPriceRequest) of the reaction rule is an event depicted with the <<event>> 

stereotype on UML class. The same stereotype is also the type of the reaction rule output message 

(CheckPriceResponse). The input message CheckPriceRequest is connected with a Class instance type 

called Airline, by using an association. The condition is represented by a Flight class that connects with 

RR and the condition expression defined on this connection (price = cvar.wantedPrice).  

 

 
Figure 90. Reaction rule modeling 

We should note that currently composite events are not supported in URML as it is complex to 

recognize such events in rule engine implementations. 

In our previous work [45][71], we presented how reaction rules can be translation into Web 

services, i.e., WSDL descriptions [71]. We have done this in the following way. A triggering event of a 
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RR maps to the input message of a Web service operation. The action of the RR, which is triggered 

when a condition is true, maps to the output message of the Web service operation. To model condition 

constructs (e.g., price = wantedPrice) we use OCL filters [94]. OCL filters are based on a part of OCL 

that models logical expressions, which can be later translated to R2ML logical formulas, as parts of 

reaction rules. However, these OCL filters cannot be later translated to Web service descriptions (e.g., 

WSDL), as those languages cannot support such constructs. This means that for each Web service, we 

can generate a complementary rule, which fully regulates how its attributed service is used. 

2.4.3.2.3. Modeling derivation rules 

 

An example of a derivation rule modeled in URML is shown in Figure 91. This rule checks if if 

a rental car is scheduled for service. This condition for a care to be scheduled is if the last maintenance 

date was more than 90 days or the service reading greater than 5000. The condition for this rule is 

defined as an OCL filter [94]. 

 
Figure 91. Derivation rule modeling 

2.4.3.2.4. Modeling production rules 

 

Figure 92 show an example of a production rule modeled in URML. This rule has a simple 

condition that states when an order value is greater then 1000 then given discount is 6, however if this 

condition is less then 1000 then given discount is 3. An assert action, depicted with “A” character is 

used to assign a new value to the “discount” variable. 

 
Figure 92. Production rule modeling 

2.4.3.3. Policy Modeling Language (PML) 

 

Policies are used to “regulate the behavior of system components without changing code and 

without requiring the consent or cooperation of the components being governed” [20]. Policies are 

usually used to constrain the behaviour of a system. Polcies are usually represented in policy definition 

languages, such as Rei, KAoS, Ponder, PML, etc. In this thesis use PML, as it represents an extension 

of R2ML that specialize R2ML‟s logical foundation, metamodel, both graphical and XML-based 

textual concrete syntax, and transformations with the policy-specific concepts [56]. This language 
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represents a policy modeling language by abstracting common policy concepts from several policy 

languages and by grounding it on the sound theoretical foundation of deontic logic. The language can 

be used in the software analysis and design phases together with other well-established languages (e.g., 

UML) and can be deployed (implementation and integration phases) and transformed to different policy 

languages and used with different technologies (e.g., for business vocabularies and rules, components, 

and processes), such as KaOS and Rei by using QVT-based transformations [56]. 

PML is also concerned with the very many existing policy languages, each of them proposed 

with the goal of protecting the privacy of information and authorizing requesters by providing different 

levels of access to the available resources and information. Each policy language is based on a 

particular type of logic (ranging from First Order Logic – FOL – to its subsets, i.e., description or 

computational logic, and their specialized variants, e.g., deontic logic 
6
[44]. 

2.4.3.3.1. Policy Modeling Language Metamodel 

 

Policy Definition Metamodel is a MOF-based definition of PML. The PML abstract syntax is 

defined by extending the MOF-based metamodel of R2ML. Figure 93 shows the metamodel for PML. 

Following the concepts of deontic logic, PML provides support for defining permission, prohibition, 

obligation, and dispensation policy rules. It also provides a conceptualization of Actions that the 

policies are defined over, Actors for these actions, and the Context to which these policies are applied. 

All these classes are derived from the super class Entity which resembles the owl:Thing element of the 

OWL language. It also should be noted that, following the MOF regulations and rules, all these classes 

could be extended to define more fine-grained policies.  

In Figure 93, we also show the icons used to graphically represent PML constructs in the 

General Policy UML profile. As shown in the figure, a policy rule is defined as an R2ML derivation 

rule with its condition part composed of a conjunction of logical formulas and its conclusion part 

containing an R2ML ObjectDescriptionAtom. For each policy rule, this element holds the 

description for an instance of one of the modal concepts in the deontic logic, i.e., permission, 

prohibition, obligation, or dispensation. The policy instance represented by an 

ObjectDescriptionAtom conveys the derived policy decision upon satisfaction of the logical 

formulas in the condition. 

 

                                                   
66 One of the main groups for modal logic that is concerned with what we ought to do, what we are allowed to do, and must 

not do, aka, obligatory, permitted, and forbidden acts. 
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Figure 93. PML metamodel 

The condition part of each policy element holds the information about the actions, on which the deontic 

modal concepts operate, the actors for those actions, and the context of the action. By using R2ML‟s 

ObjectClassificationAtom, we represent the class to which each object belongs and by using 

the R2ML‟s ReferencePropertyAtom, we represent association relations in PML. The metamodel 

has the following associations: performedBy, hasAction, hasContext, hasEffect, obliges, triggeredBy, 

location, time, and target. The performedBy association relates an action as the subject to an actor as the 

object. The hasAction association relates a policy as the subject to an action as the object. Similarly, the 

hasContext association relates the policy element as the subject to the context to which the policy is 

applied. It can also represent the context in which an action is performed. The hasEffect element 

represents effects of applying a policy, for example, to impose a penalty action. The triggeredBy 

association represents the action upon its occurrence the policy is fired. Location and time respectively 

represent the location and the time where the policy occurs. Finally, the obliges association is specific to 

the obligation policy rules and represents the obligatory task that an actor ought to perform upon 

execution of the policy. All these associations from the PML metamodel can be represented by R2ML‟s 

ReferencePropertyAtom. This preserves the compatibility of PML with R2ML.  

2.4.3.3.2. Policy UML Profile 

 

The Policy UML Profile is a graphical concrete syntax of PML. Extending URML, we have 

developed a graphical concrete syntax for PML (see Table V). To do so, we have defined a UML 

stereotype for each PML concept. 
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Table V. PML concrete graphical syntax 

Stereotype UML 2.0 metaclass Graphical notation 

Permission Policy Class DR
id:1

Perm

 

Prohibition Policy Class DR
id:1

Proh

 

Obligation Policy Class DR
id:1

Oblg

 

Dispensation Policy Class DR
id:1

Disp

 

Action Class 
 

ActionClass
<<Action>>

 

Actor Class 
 

ActorClass
<<Actor>>

 

Context Class ContextClass
<<Context>>

 

triggeredBy AssociationEnd  

hasEffect AssociationEnd  

hasAction AssociationEnd 
 

hasContect AssociationEnd 
 

obliges AssociationEnd  

performedBy AssociationEnd 
 

location AssociationEnd 
 

time AssociationEnd 
 

 

As an example of the use of General Policy UML Profile, let us consider a policy in which “Only the 

doctor from the emergency section is allowed to access the medical test results of a patient and a 

notification email is required to be sent to the patient”. Figure 94 shows how the Policy UML Profile 

represents the above policy. The Action class has been used as a stereotype to define the SendMail and 

AccessElectronicHealthRecords actions. The Doctor is derived from the class Actor and is connected to 

the AccessElectronicHealthRecords action via a performedBy association. Also the target for the policy 

has been represented using the class MedicalTestResults and the context for the policy has been 

identified as ElectronicHealthRecord. The EmergencySection has been represented as an entity 

connected via a location association to the action, thus identifying the place where the policy is applied. 

As shown in Figure 94, the graphical notation for the PML tries to provide an intuitive way of 

representing the intentions of the policy designers by adjusting the icons and relations with respect to 

designers‟ mental models.  
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Doctor

DR
id:1

Perm

-careCardNo

ElectonicHealthRecord

MedicalTestResults

EmergencySection

Hospital

P

X

{X.careCardNo <> P.context.CareCardNo}

SendMailAction

-careCardNo

AccessElectronicHealthRecord
<<Action>>

<<Action>>

<<Actor>>

<<Entity>>

<<Entity>>

<<Entity>>

<<Entity>>

 
Figure 94. PML model of the patient/doctor policy 

2.5. Integration of business rules and business processes 
 

The most notable efforts with respect to the integration concept of business rules and business 

processes can be associated with the the introduction of a rule modeling method of business processes 

in 1998, by Kappel et. al [54] and in 2000, by Knolmayer et. al [59]. The former group of authors 

proposed using reaction rules in modeling coordination in workflow systems, as reported by [152]. The 

first time when integration of business rules and processes approaches was identified in information 

system development is in the work of Korgstie et. al. [60]. The authors proposed this integration for 

capturing temporal information by using the External Rule Language (ERL). ERL is based on first-

order temporal logic and it is used to define process logic, so that rules can constraint or describe 

processes. ERL supports definition of constraint (integrity), derivation and action (reaction) rules. 

Korgstie et. al. also showed how such models of processes could be translated into C source code. 

McBrien & Seltveit [76] extended Korgiste et al‟s work by proposing a technique for defining rules 

structure inside a process model. They used process modeling language for defining how activities 

interact, while business rules (defined in ERL) are used to make precise statements about certain 

activities. Rules are defined in a form of a reaction rules, and the show how to translate a process to the 

ERL rules.  

Kovacic [64] proposed a metamodel-based approach for linking business constructs, such as process 

and activities with technical constructs, such as software components. Knolmayer et al. [59] created a 

framework where ECA business rules are used for decomposition of business processes. They showed 

how business process could be expressed as business rules. In order to allow for the administration of 

the relations between process and workflow models, Knolmayer et al developed a rule repository, which 

provides tools for process, workflow and data modeling, as well as import and export capatibilities to 

different workflow modeling systems. However, it is reported that “models that are only composed of 

reaction rules, have to risk to being over-specified and can be regarded as prescriptive” [40].  

Charfi & Mezini [17] proposed a hybrid approach for integration of rules and process by using an 

aspect-oriented BPEL dialect called AO4BPEL. These authors investigated how different kinds of 

business rules could be implemented by means of aspect-oriented constructs in AO4BPEL, such as 
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before, after and around advices. The implementation of a business rules is separated from the rest of 

the process and in the analysis phase, business rules are expressed declaratively as if/then statements. In 

the implementation phase, each business rule is mapped to business process constructs and to aspects 

(i.e., “point-cuts”, statements that relate an aspect to a specific point in the code). This approach 

requires a modified BPEL engine to handle such additional aspect-oriented constructs. This approach 

has been generalized not only to BPEL by Cibran & Verheecke [18]. They proposed that business rulse 

be transformed to aspects, while activities are considered points to place point-cuts. This enable that 

business process constructs change behaviour in the point-cut places.  

Meng et al. [80] developed a dynamic inter-organizational workflow system to integrate e-services. 

This dynamic workflow model enables the specification of dynamic properties associated with a 

business process models expressed in Workflow Process Definition Language by adding connectors, 

events, triggers and rules as modeling constructs. Their system uses a rule server to trigger business 

processes during the enactment of workflows in order to check business constraints.  

Rosenberg & Dustdar [113] proposed a middleware service called Enterprise Service Bus (ESB) for 

integration of business rules and business processes represented in BPEL. On ESB as a middleware, 

they attached a BPEL engine, transformation engine, rule interceptor, business rule broker and Web 

service gateway. The business rule broker is an abstract API for different rule engines, so that they 

could be used in uniform way with ESB as pluggable interfaces, just by defining a new adapter. The 

rule interceptor service intercepts all incoming and outgoing messages and automatically applies 

business rules to them. In this approach, rules are attached just before and after to the BPEL activities.  

Orriëns et al. [97] generate business processes dynamically by composing Web services, if they are 

constructed and governed by business rules. Business rules are used in the context of service 

composition to determine how the composition should be structured and scheduled, how the services 

and their providers should be selected and how run-time service binding should be conducted. They 

developed a rule-driven mechanism to govern and guide the process of service composition in terms of 

five broad composition phases including abstract definition, scheduling, construction, execution and 

evolution to support dynamic business process building. Based on these phases they analyze and 

classify business rules and determine how they affect service compositions; in this way the composition 

engine can construct process descriptions.  

Similar to Orriëns et al., Lee et al. [69] proposed a theoretical foundation where process flows are 

constructed by means of connecting ECA rules and translated into executable business process, and Bry 

et al. [15] follow the same principle, by suggesting using ECA rules represented in the XChange 

language for busienss process description. Therefore, a complete business process is represented by 

using XChange, and every rule is represented as an activity that is checked by invoking certain service. 

A limitation of this approach is that there is no suggested graphical representation of rules in a process 

diagram, and in this approach, rules are separated from a process. 

 Goedertier & Vanthienen [39] use deontic assignments (obligations, permissions and prohibitions) 

to model business proctols. They have developed an algorithm called PENELOPE that generates 

process flows for each business partner by applying reasoning over Event calculus. In their notation, 

decision points are represented as circles, and they group sets of reaction rules. The events in such rules 

are the inflowing arrows into a decision point. The activities are represented as arrows that flow out of a 

decision point into the activities. However, PENELOPE only allows expressing business rules about 

sequence and timing constraints. Goedertier et al. [40] further develop their concept from [39] by 

introducing the EM-BrA
2
CE framework that addresses control flow, data and resource aspects of 

business processes. This concept is realized by 16 different types of business rules that need to be 

enforced during the lifecycle of an activity. They extended SBVR for declarative business process 

modeling. The EM-BrA
2
CE framework can undergo multiple state transitions and it allows to construct 

a suitable execution plan at runtime via different transitions (like OWL-S and WSMO).  

Graml et al. [43], propose how business rules can be combined with business processes (BPEL) to 

run-time change of a running business process. Graml et al. showed how to use derivation rules for 
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controlling flows, data constraints and process rules, to dynamically add tasks or to call subprocesses. In 

order to support their proposal, they created a central dispatcher process that triggers rule execution and 

invokes relevant process fragments by using IBM WebSphere Integration Developer.  

We should also mention work done in area of distributed rule execution made by Rosenber & 

Dustdar [115] and Schmidt [118]. Rosenber & Dustdar proposed an approach that uses a rule engine 

wrapper in order to distribute the control flow over different systems. Execution of business rules forms 

a process flow. Schmidt uses a SOAP messages to execute business rules in distributed environment. He 

proposes storing business rules in the SOAP header and sending them with messages. This allows 

distributed execution of the business rules.  

Eijndhoven et al. [30], proposed integration of ECA rules into a business process (BPMN-based) by 

reusing service interaction patterns. Their solution uses ECA rules to model the flow of the process and 

to execute parts of the process at different variability points. In this way, they implement the same 

workflow patterns as traditional business process languages. They also proposed methodology consists 

of three steps: 1. Identify the variable and non-variable (changeable) segments in a process, 2. Identify 

an appropriate worksflow patterns that model the behavior of each variant in a variation point, 3. 

Implement workflow patterns using business rules.  

 In Table VI, we show comparison of abovementioned rules and processes integration 

approaches. Generally, the research efforts shown in this table can be divided into two major categories: 

i) fully rule-based; and ii) integration of business rules into process-oriented models (so called hybrid 

approaches). In the first group of approaches, the researchers aim to model business processes fully by 

using business rules. The representatives of this approach are: Knolmayer [52], McBrien & Seltveit [68] 

and Bry et al [15]. This approach is usually done with production and reaction rules. JBoss‟ Drools 

rules are used for business process modeling, and consequently for regulating service. However, there 

are a few issues with such an approach: comprehension of the overall process and relations among its 

constitute parts is tedious given that business rules only focus on small parts of business logic; business 

process execution is fully driven by reasoning algorithms (e.g., Rete), which might lead to some 

unexpected behavior hard to determine upfront and might affect the trust of business users in such 

solutions; there is no effective and unified modeling support of different types of rules; and rules are 

typically represented in implementation languages, without features to use high-level business process 

modeling languages.  

The second category of (hybrid) approaches recognizes the above problems and proposes 

methods for integration of business rules and business process modeling languages. Typical 

representatives of this approach are Eijndhoven et al. [25] and Graml et al. [37]. However, neither of 

these two solutions proposes a systematic definition of a rule-based business modeling language, which 

encompasses expressivity of the state of the art languages for both business rule and process modeling. 
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Table VI. Comparison of rules and processes integration approaches 

Approach Purpose Reported 

benefits 

Process-

oriented 

language 

Rule 

language 

Integration of 

languages 

Types of rules 

IR DR PR RR 

McBrien & 

Seltveit [76] 

Description of a 

process by 

means of 

business rules. 

Process 

representation of a 

rule model, formal 

and graphical 

representation of 

rules, executability 

of a process model 

by code generation. 

PID ERL Graphical syntax  + + - + 

Knolmayer 

[59] 

Modeling 

business 

processes by 

means of ECA 

business rules. 

Integration platform 

for different process 

modeling 

techniques, partial 

modeling of 

different process 

actions by means of 

business rules. 

Extended 

ECAA 

notation 

ECA notation Graphical syntax  - - - + 

Charfi & 

Mezini [17] 

Web services 

composition by 

use of AOP as 

an 

implementation 

technology to 

integrate rules 

into business 

processes. 

Dynamic adaptation 

of the web service 

composition, 

integration of rules 

into a service 

composition . 

BPEL AO4BPEL Hard-coded via 

aspect oriented 

programming 

+ + - + 

Meng et al. 

[80] 

Integration of e-

services in 

inter-

organizational 

workflows. 

Dynamic workflow 

model for modeling 

business processes, 

dynamic service 

binding, the 

technique for run-

time modifications 

of the run-time 

workflow structures 

to alter the course of 

executing workflow 

instances. 

WPDL Hard-coded 

(CBRSL) 

Graphical syntax 

and Metamodel-

based  

- - + - 

Rosenberg 

& Dustdar 

[113] 

Integration of 

rules in a 

BPEL. 

Integration of 

business rules in 

process-oriented 

Web service 

composition, use of 

standard Java Rule 

API for integration 

of different rule 

engines. 

BPEL Java, RuleML Web service 

based and hard- 

coded 

+ + - + 

Orriëns et al 

[97] 

Business rule 

driven service 

composition 

framework. 

 

Generation of 

business process 

dynamically by 

composing Web 

services constructed 

by business rules. 

The rules contain 

facts on the process 

elements and their 

required flows, 

based on which the 

composition engine 

is able to construct 

the flows and the 

elements into a 

process description 

that can be then 

executed.. 

AGFIL-BM RuleML Graphical and 

textual syntax 

based 

+ + - + 
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Bry et al 

[15] 

Use of ECA 

rules for 

describing 

business 

processes in an 

executable 

manner. 

Realization of 

business process 

control flow by 

means of ECA 

business rules. 

XChange XChange Hard-coded 

(procedural) 

- - - + 

Goedertier, 

Haesen, 

Vanthienen 

[39] [40] 

Using business 

rules to 

represent 

policies and 

regulations in 

business 

process models. 

Generation of 

process flows for 

each business 

partner by applying 

reasoning over 

Event calculus. 

EM-BRACE PENELOPE 

for deontic 

assignments 

and Hard-

coded for 

other types of 

rules 

Graphical syntax 

and Metamodel-

based  

+ + + + 

Graml et al. 

[43] 

Integratio of 

business rules 

with business 

processes to 

run-time 

change of a 

running 

business 

process. 

Set of business rule-

enabled business 

process modeling 

patterns that 

overcome 

adaptability 

limitations for 

process decisions, 

constraints and 

subprocesses. 

Extraction of 

business logic that is 

contained in 

business process 

models into business 

rules. 

BPEL Java Graphical syntax 

and hard-coded  

+ + + - 

Eijndhoven 

et al. [30] 

Uses of 

business rules 

and workflow 

patterns to 

model the 

variable parts of 

process flow, 

by facilitating 

dynamic pattern 

composition. 

Solution to 

increased flexibility 

of service oriented 

business processes 

by using ECA rules 

to execute parts of 

the process at 

variability points. 

ECA rules are used 

to model the flow in 

a business process. 

BPMN iLOG JRules Graphical syntax 

(transformations

) 

- - - + 
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3. Rule-enhanced Business Process Modeling Language and Methodology 

Service-oriented architectures (SOA) offer flexible integration of software systems and various 

collaborating parties. Service development mainly follows proven principles of business process 

modeling. Based on process-oriented modeling languages (e.g., Business Process Modeling–BPMN 

notation and UML Activity Diagrams), service developers start from the high-level business process 

models. Such models typically cover aspects such as flow of control, data, and activities. A significant 

progress in this area has been made in several critical aspects. In spite of the promising results, there are 

several research challenges to be addressed. First, process-oriented models are typically not well-

connected with models of software structure or business vocabularies. This reduces the extent to which 

service definition can automatically be generated from the process models (e.g., definitions of message 

types). Second, constant changes of business logic require effective mechanisms for updating of process 

models. Currently, there is limited support for decoupling parts of business logic (e.g., constraints and 

process decisions) from the full process models. Consequently, this limits more dynamic updates of 

business logic and their propagation to the executable software systems. Third, the complete business 

process models are typically hard to be understood by business experts. Capturing smaller chunks of 

business logic and their consequent integration into bigger process models is a more effective and 

reliable approach. Finally, current process-oriented models do not provide a complete support for 

modeling of exchange of business logic between different collaborating parties. For example, in some 

situations, a service requestor wants to subscribe for a certain services, which will be only invoked 

under certain conditions (e.g., currency exchange rate change). Service providers need to obtain such 

rules from the service requestor, check if such rules are valid w.r.t. their service policies, execute such 

rules on their (service) side, and allow for dynamic rule changes by service requestors. 

In order to answer to these challenges, we propose a language called Rule-based BPMN (rBPMN) 

that integrates support for business rules (R2ML) in business process modeling (BPMN). Previous work 

on this topic provided some promising research results (see Section 2.5). Probably, the most 

comprehensive approach is [42][43] that identified a set of patterns for integration of business rules into 

business process models. However, that work did not provide a definition of a rule-based process-

oriented modeling language. Consequently, it was not possible to provide a comprehensive solution that 

addresses the four previously mentioned challenges.  

Additionally, business rule approach can bring more benefits to business processes, such as:  

 Business rules extract business logic in form of conditions form business processes, which 

enable flexibility to make changes in a business process. 

 As business rules can be stored in one place (repository), they can be reused in multiple 

places in a business process. 

 Such rules are more understandable by business people, which could be less error-prone 

approach in defining business processes. 

 The business rules enabled declarative approach, and that is one is focused on what should 

be solved and not how. 

 

In this section, we define a rule-based business process modeling language–rBPMN. rBPMN is a 

result of integration of the BPMN and R2ML languages. BPMN has been selected due to its broad user 

adoption, comprehensiveness in covering business process concepts, and rich experience in its use. The 

selection of the rule language was driven by: research objective specified in the previous section; need 

to make use of a proven and rich rule modeling language; previous experience in integrating with 

software modeling languages; and objective to follow proven principles and standards for engineering 

software modeling language (i.e., model-driven engineering). Thus, R2ML has been selected, as other 

relevant languages are used only either for rule interchange (e.g., RuleML and RIF) or for representing 

a specific type of rules (e.g., SBVR and PRR). R2ML is defined by using model-driven engineering 
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principles and its relations with UML have been deeply investigates. Briefly, rBPMN is defined through 

integration of R2ML and BPMN at the level of their metamodels (so-called model weaving).  

We have shown that [105] the combination of BPMN and R2ML gives the highest ontological 

completness among different languages we analysed: BPMN 2.0, PRR, R2ML, SWRL and rBPMN. 

This analyse is done by using well-known Bunge-Wand-Weber (BWW) representation model [144]. 

Ontological completeness means that a user of a given language is able to represent a relevant real 

world scenario when modeling in the given modeling language. We analysed multiple possibilites for 

combining process and rule modeling languages in order to achieve higher ontological completness. 

More details about representational analysis of business process and rule languages can be found in 

[105]. 

In the following subsections, we first explain extensions to its graphical syntax, and then explain 

integration of metamodels of BPMN and R2ML. 

 

3.1. rBPMN graphical concrete syntax 
 

In order to support usage of R2ML rules in BPMN, we decided to include rules in two different 

ways, as events and as gateways. Primarily, our approach is based on representing rules as gateways in 

rBPMN, because rule decisions can be represented as forks in business processes, i.e., outgoing 

sequence flows from a gateway. As our intetion is to represent rules as first-class citizens in rBPMN, 

we introduced a new gateway symbol, called rule gateway (a gateway with R symbol inside). As R2ML 

support four types of rules: reaction rules, production rules, derivation rules and integrity rules, we 

wanted to introduce rules uniquelly in rBPMN, so rule gateway can be connected to any of these rule 

types. The rule gateway can be connected to one rule, two or more rules, or to a ruleset.  

For representing rules and their conditions/actions, we use graphical syntax from URML language 

(see section 2.4.3.2). In table VII we show how URML graphical elements are mapped to the R2ML 

metamodel elements.  

The complete rBPMN synax for rules can be found in Appendix D. 

 

Table VIII. Mappings between URML and R2ML elements 

URML Description URML Metamodel R2ML Metamodel 

Derivation Rule: a circle with a 

label “DR” and a rule identifier. 

DerivationRule DerivationRule 

Production Rule: a circle with a 

label “PR” and a rule identifier. 

ProductionRule ProductionRule 

Reaction Rule: a circle with a 

label “RR” and a rule identifier. 

ReactionRule ReactionRule 

Association Condition: an arrow 

from an association to a rule. 

BinaryAssociationAtom ReferencePropertyAtom 

Classification Condition: an 

arrow from a class to a rule. 

ClassificationAtom ObjectClassificationAtom 

Property Condition: an arrow 

from a property to a rule.  

RoleTypeAtom PropertyAtom 

Post Condition: a double-head 

arrow from a class to a rule. 

ClassificationAtom ObjectClassificationAtom 

Association Conclusion: an 

arrow from a rule to an 

association. 

BinaryAssociationAtom ReferencePropertyAtom 

Classification Conclusion: an 

arrow from a rule to a class. 

ClassificationAtom ObjectClassificationAtom 
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Property Conclusion: an arrow 

from a rule to a property. 

RoleTypeAtom PropertyAtom 

Attribution Conclusion: an arrow 

from a rule to an attribute. 

AttributionAtom AttributionAtom 

Assert Action: a double-head 

arrow from a rule to a class, with 

an “A” near the arrow head. 

AssertActionExpr AssertActionExpression 

Retract Action: a double-head 

arrow from a rule to a class, with 

an “R” near the arrow head. 

RetractActionExpr RetractActionExpression 

Update Action: a double-head 

arrow from a rule to a class, with 

an “U” near the arrow head. 

UpdateActionExpr UpdateActionExpr 

Invoke Action: a double-head 

arrow from a rule to a class, with 

an “I” near the arrow head. 

InvokeActionExpr InvokeActionExpression 

 

We should also mention that, in the standard BPMN [89], there is Conditional Event Definition 

(rule event), which can be used to attach some expression defined in a rule language, but this event type 

models only the behavior of production rules. In addition, it is possible to use an expression attached to 

the outgoing conditional sequence flow when the source is gateway, however, in the standard BPMN, 

there is no concrete proposal for a rule language that could handle such expressions.  

In addition, we connected a production rules to the BPMN Conditional (rule) event, because in 

standard BPMN this type of event is not associated with any formal rule language. We need to have a 

formal language because we want our process to be executable. Reason for using production rules is 

that this type of event is triggered when its condition evaluates to true, so production rules can support 

this kind of behavior.  

In subsequent sections, we will how we integrated rule gateway and rule event with different 

rule types, as well as definition of vocabulary that we use in rules.  

 

3.1.1. Vocabulary in rBPMN  
 

As each rule needs to have facts (data) in order to infere and to return results, we need to define 

a basic vocabulary that will be used by a rule. An R2ML vocabulary is defined in the form of UML-

class diagrams, by using basic vocabulary concepts introduced in Section 2.4.3.1.5. Similariy, we use 

R2ML vocabularies in rBPMN to represent messages and data. 

 In Figure 95, we show an example of a R2ML vocabulary from the EU-Rent Vocabulary 

Business Context [32] defined in rBPMN. EU-Rent is a car rental company owned by EU-Corporation. 

EU-Rent rents cars to its customers. Customers are individuals. In this figure, we can see how we 

graphically represented classes (such as Rental, Person), class attributes (e.g., forename, surname, and 

address attributes with the String datatype in class Person), inheritance (classes BarredDriver and 

QualifiedDriver are subclasses of the class Person), and reference properties (e.g., badExperience 

reference of the class Person). We should also mention that R2ML vocabulary enables defining 

datatypes, operations, variables (data and object) and constants, too. 
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Figure 95. An example of R2ML vocabulary excerpt defined in rBPMN [32] 

Each of the classes shown in Figure 95 can be separately used in defining rule conditions. 

 

3.1.2. Integration of R2ML rules and rBPMN rule gateways 
 

A rule gateway can be associated to one or more the R2ML rules where rules can be of different 

rule types. However, with respect to the rule type, the rule gateway meaning remains the same, but its 

context is different. In order to see how the rule gateway can be connected to different rule types, we 

will present that integration in this section for each R2ML rule type. 

3.1.2.1. Integration of integrity rules and the rule gateways 

 

 First, we will show how R2ML integrity rules are associated with a rule gateway. In URML 

integrity rules are represented as OCL invariants on a data model. Also, our previous research 

demonstrated there is a bi-directional transformation for mapping between R2ML integrity rules and 

OCL [94]. Thus, we connect a rule gateway to one or more OCL invariants. Also, one OCL invariant 

can be referenced by multiple rule gateways. In Figure 96, we show how we connect an integrity rule in 

form of an OCL invariant with a rule gateway (the invariant is attached to the Person class in Figure 

95). This invariant states that a barred driver is a person known to EU-Rent as a driver who has at least 

3 bad experiences. In this case, the rule gateway use attached integrity rule to infer whether the 

invariant evaluates to true or to false. The attached invariant, use classes from a predefined common 

data model (vocabulary) in its definition, so the incoming data in the rule gateway‟ incoming data flow 

must have the same variable type in order for rule to conclude (the mappings between process data and 

rule data is defined in the rBPMN editor). Based on the rule return value (Boolean decision), the 

corresponding outgoing sequence flow from a rule gateway is chosen. The crossed outgoing sequence 

flow from a rule gateway is chosen in the case of a negative decision (the False task in Figure 96), and 

the other sequence flow, which is not crossed, is chosen in the case of a positive decision (the True task 

in Figure 96). The implementation logic for a rule gateway must be supported in the process execution 

engine. We can have one or more integrity rules connected to the rule gateway, so we can one or more  

outgoing sequence flows from a rule gateway. If any of invariants evaluates to false, then the condition 

is false and thus the False task is executed. Otherwise, if all of them are true, then the True task is 

executed. This is the case because integrity rules usually represents constraints in a process, which 

when not satisfied a process flow cannot continue, and it forks in that point (usually handled by some 

exception handler). The task for an exception handler is to determine which invariant is violated and 

consequently make corrective actions. If invariants are transformed into SWRL or OWL, we can use a 
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reasoner to provide an explanation why some error has happened or some incosistency has occured. 

Thus, it is easy for the exception handler to know how different invariant violations to handle. 

 

 

 

Figure 96. Integration between integrity rules and the rule gateway (R) 

3.1.2.2. Integration of derivation rules and the rule gateway 

 

Integration of derivation rules and rule gateways is different from the integration of integrity 

rules and rule gateways. The main difference is that in case of derivation rules, besides derivation rules 

we must have also production or reaction rules connected to the rule gateway. We use a derivation rule 

to infere new knowlegde and if the rule condition is satisfied the rule will produce a new fact. Then, we 

use associated production (or reaction) rule that will be triggered to make a decision. In addition, 

derivation rules could be used without production or reaction rules, when there is no connection to the 

rule gateway, e.g., derivation rule can be attached to an activity to infere some fact that can be used later 

in the process. 

We use two rule in the case of Boolean decision, and two or more rules in the case of multiple 

choice. Two rules are needed because of a rule nature [143], where condition on one rule must be 

negated condition of another rule.  

 In Figure 97, we can see how a derivation rule and to production rules connected to a rule 

gateway in the case of Boolean decision. The condition attached to the rule gateway is a condition (if 

rental car last maintenance date >= 3 months or if rental car service reading  >= 5000 km then rental 

car scheduled for service) of the derivation rule, If the condition on the derivation rule evaluates to true, 

the “true” the fact ”rental car scheduled for service” is produced. In this case, the first production rule 

(id:2) is chosen to execute the “RentalCar is Scheduled for Service” task. If the condition evaluates to 

false, then the second production rule is invoked and the “RentalCar not Scheduled for Service” task is 

invoked. Therefore, each rule gateway outgoing sequence flow is connected to a production rule. The 

data from a business process is passed to the rules‟ condition part and it is defined as part of the rBPMN 

(R2ML) vocabulary.   
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a) rBPMN model for rental car scheduled for 

service decision 

b) Corresponding rules 

 

Figure 97. Integration between derivation rules and the rule gateway (R) – Boolean decision 

When we have two or more outgoing sequence flows, i.e., in the case of multiple choice decision, we 

can have two variants. In the first case, each outgoing sequence flow from a rule gateway can be 

directly mapped to a derivation and production rule pair, and in the second case, we can have multiple 

outgoing sequence flows attached to a production rule, and one (crossed) outgoing sequence flow that 

acts as ELSE branch. 

If we have a rule gateway RGj to which we can assign n production or reaction rules: LE = 

{LE1, LE2, ..., LEn}, where for each production/reaction rule LEj (j=1..n), which is triggered on a fact  

that is derived through its associated derivation rule, exists exactly one outgoing sequence flow from a 

rule gateway. Each outgoing sequence flow (OFj) from a rule gateway is choosen if a logical expression 

LEi  1 ≤ i ≤ n is evaluated to true. However, for each logical expression, we can also have a false result. 

In that case, we need to have exactly one else for a rule gateway, whose logical expression is not (LE1 

˅ LE2 ˅...˅ LEn). So, each logical expression on a outgoing sequence flow from a rule gateway is 

mapped to a R2ML rule condition: R = {R1, R2, ..., Rn}. This means that each rule have assigned one 

logical expression LEj (j = 1..n) for its condition.   

The multiple choice decision by using three pairs of derivation-production rules attached to the 

rule gateway represented in rBPMN shown in Figure 98 for a following set of rules: 

 Give discount 50 points for money rental if rental period >= 7 days (DR - id:1); 

 Give discount 100 points for money rental if rental period >= 14 days (DR - id:2); 

 Give no discount if rental period is less than 7 days (DR - id:3). 

Each outgoing sequence flow condition from the rule gateway represents condition on one of the 

production rules attached to it (see Figure 98b). These rules are also triggered on a fact that is derived 

through its associated derivation rule. Based on the rule‟s evaluated condition, the appropriate outgoing 

sequence flow from the rule gateway is chosen.  
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a) rBPMN model for rental car scheduled for 

service decision 

b) Corresponding derivation rules 

 

Figure 98. Integration between derivation rules and the rule gateway (R) – Multiple choice decision 

3.1.2.3. Integration of production rules and the rule gateway 

 

In the case when we need to call some action to be executed directly from a rule or to define a 

postcondition, we can use production rules connected to a rule gateway. The integration between 

production rules with a gateway is the same as between derivation rules and a rule gateway, already 

described in section 3.1.2.2. However, in this case we can use rules produced action part to invoke, 

update, assert or retract data in the working memory. 

 In Figure 99, we show an example of a rBPMN process for a rule that states: if customer returns 

a car and the car has more than 5000km from the last service then send the car to the service. The rule 

gateway in Figure 99a has a RentalCar for its rule condition from the vocabulary, and two outgoing 

sequence flows. On the first outgoing sequence flow, we define the rule condition, while on the second 

(crossed) outgoing sequence flow, we have the same rule but just negated. In Figure 99b, we have two 

corresponding production rules for the two outgoing sequence flows from the rule gateway (shown in 

Figure 99a). If the rule (id:1) condition is not satisfied, then the Continue activity is invoked, and the 

crossed outgoing sequence flow is. Otherwise, if the rule condition is satisfied, the rule (id:2) the 

production rule (id:2) is returning the Service message with the service name, added by the rule append 

action, and the Service message is used by the LookupService activity to find a concrete service with the 

serviceName name and to enable it for the Assign doService task to invoke it instead of the doService 

(dummy) task in the process. As shown in this example, this enable for dynamically chosing the 

invoked activity (service) by using production rules attached to the rule gateway.  
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a) rBPMN model for rental car scheduled for 

service decision 

b) Corresponding production rules 

Figure 99. Integration between production rules and the rule gateway (R) 

3.1.2.4. Integration of reaction rules and the rule gateway 

 

Reaction rules are similar to production rules, and they can be used in the same way with the 

rule gateway, as it can also have a postcondition and it can invoke, update, assert or retract data in the 

working memory. However, reaction rules have some advantages over production rules. They can be 

invoked by an explicit event, and they can be triggered or trigger atomic or composite events (such as 

sequence of events, parallel events, choice events and events such as, when event A occurs and event B 

does not).  

The reaction rule expression when event A occurs the B event does not (the 

AndNotEventExpression from the R2ML metamodel – see section 2.4.3.1.5.4) can directly be mapped 

to the output of  the rule gateway that have exactly two outgoing sequence flows, where one of these 

sequence flows is negated (as shown in Figure 97 for derivation rules).  

 In Figure 100, we show two corresponding reaction rules for the rule gateway given in Figure 

97a. Both reaction rules have the same conditions as derivation rules in section 3.1.2.2.  However, in 

this example both reaction rules have an incoming request message. The first reaction rule (id:1) is 

triggered on the CheckIsRentalCarScheduledForService request (event), and if the condition is 

satisfied, the rule fires rental car scheduled for service event (by using double-headed arrow), and at the 

same time the rule ensures that the rental car not scheduled for service event is not fired (by using 

crossed double-headed arrow). The second reaction rule (id:2) in Figure 100 is triggered on the same 

request (event), and if the negated condition is satisfied, the rule fires the rental car not scheduled for 

service event (by using double-headed arrow), and at the same time, the rule ensures that rental car 

scheduled for service event is not fired (by using crossed double-headed arrow). 
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Figure 100. Reaction rules for the rule gateway shown in Figure 101a 

In the case of parallel events, we use reaction rule to trigger them simultanously. We will show how we 

can use the rule gateway with reaction rules in the case of the following reaction rule: on a customer car 

request, if the car is available then send approval and notify rental house management at branch. In 

Figure 101a, we show this rule in the form of a rBPMN process. After the start message event 

(annotated by the CarRequest message) has been sent from the Customer pool to the Branch pool, the 

rule gateway is enabled to invoke the attached reaction rule (shown in Figure 101b). If the rules‟ 

condition (rental car is available at branch) evaluates to true, three actions are produced, the rental car 

is stored at the branch (in data model) and the CarRequestResponse and Notification messages are 

generated to be send to the Customer pool. In Figure 101a, these the later two actions are done by using 

the notifyRentalHouseManagement and SendInfoToCustomer tasks, after the parallel gateway, 

respectively.  

  
a) rBPMN model for rental car request decision b) Corresponding reaction rule 

Figure 101. Integration between reaction rules and the rule gateway (R) in the case of a parallel events 

In the case of a sequence composite event, we have multiple events that happen in an ordered sequence. 

We will use the same example as for the parallel events, but now composed in a sequence. We want 

first to mark the requested car as stored at branch, and then to send approval to the customer. In Figure 

102a, we show the same rBPMN process as in Figure 101a, but in this case we introduce a subprocess 

with two tasks. A new task StoreRentalCarAtBranch which is used to store car at branch, and then we 

send the CarRequestResponse message to the Customer. In Figure 102b, we have a corresponding 

reaction rule which is attached to the rule gateway in Figure 102a. In this rule diagram, the reaction 

rule‟s action part now triggers a subprocess with the StoreRentalCarAtBranch activity, which is used to 

store the requested car at the branch and returns the CarRequestResponse message to the Customer. 
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a) rBPMN model for rental car request decision b) Corresponding reaction rule 

Figure 102. Integration between reaction rules and the rule gateway (R) in the case of a sequence events 

The usage of the choice composite event of R2ML is shown on the following rule example: if a car is 

stored at a branch, it is not assigned for rent and it is not scheduled for service, thus mark car as 

available at the Branch. A check car availability task can be triggered by a Customer in the case of car 

a request, but also by the car owner (EU-rent company), for example, in order to transfer the car to a 

Branch without free cars. This means that we can get two different requests (triggers), but only one 

event is needed to happen in order to fire a reaction rule. The choice composite event represents 

triggering events of a R2ML reaction rule. 

 In Figure 103a, we show an rBPMN process model where Customer can send the CarRequest, 

but also EU-Rent can send the CheckCarAvailability message to the Branch. We used an exclusive 

gateway before the rule gateway in order to choose one or both events.  On either of the two events, the 

reaction rule attached to the rule gateway, shown in Figure 103b is triggered. If the car is available, it is 

marked as available, and the Send CarAvailability task is invoked to return the message to the Customer 

or the EU-Rent (depending on who sent the message, by using an implicit correlation). Based on the 

information returned from the Branch, the Customer or EU-Rent can decide what further to do with a 

car. 

 

 

a) rBPMN model for a car availability check b) Corresponding reaction rule 

Figure 103. Integration between reaction rules and the rule gateway (R) in the case of a choice 

composite event 
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3.1.2.5. Integration of PML policies in rBPMN language 

 

In order to integrate policies into rBPMN, we use the Policy Modeling Language (PML) [56], as it is 

built on R2ML. PML abstracts common policy concepts from several policy languages and by 

grounding it on the sound theoretical foundation of deontic logic, while keeping it away from the 

paradoxes that deontic logic introduces [82]. The language can be used in the software analysis and 

design phases together with other well-established languages (e.g., UML) and can be deployed 

(implementation and integration phases) and transformed to different policy languages and used with 

different technologies (e.g., for business vocabularies and rules, components, and processes). 

As PML policies are represented as a R2ML Derivation rules and as PML policy can be placed in 

different places in a business process, we decided to support PML policies by using BPMN associations 

from three BPMN elements, regarding translation of the PML policies into SOA (WS-Policy language 

[139]). In Figure 104, we show how PML policies can be attached to different rBPMN elements 

regarding translation to WS-based elements, by means of (derivation) rule annotations. Namely, we 

have a support for attaching PML policies to following BPMN elements, as WS-Policy language define 

policies on WSDL services, portType and message: 

a) Pool – for defining PML policies on WS Services and Endpoints; 

b) MessageFlow – for PML defining policies on WS Messages, and 

c) Task – for defining PML policies on WS Operations. 

In Figure 104, we have attached a policy to the Pool first, and this means that this policy apply to 

all services (activities) offered by this Pool. The second policy is attached to the message flow, and 

this introduces a message-level security for protecting messages. In the third case, the policy is 

associated with the Activity. This means that the policy the Activity can be invoked by the requestor 

only if conditions from the policy are satisfied. 

 
Figure 104. GPML policies in rBPMN language 

We use policies in order to convey conditions on an interaction between two partners in an interaction. 

A provider of a service usually exposes a policy to give conditions under which it provides that servis, 

and the requester of the service uses this policy in order to decide whether to use the service. 

We use WS-Policy here as it polices are attached to WSDL elements, and on the implementation 

level rBPMN elements are mapped to the BPEL/WSDL elements, as shown in BPMN2 specification 

[89]. As we have already developed transformations between R2ML and WSDL [111], it is 
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straightforward to add WS-Policy concepts in WSDL Web service generation. Therefore, we can 

generate complete BPEL processes with WSDL (WS-Policy) descriptions from a rBPMN process. 

PML policies, which are actually specialized R2ML Derivation rules, can also be connected to 

the rule gateways, as shown in Figure 105. 

 
Figure 105. GPML policy in interaction model diagram 

 

3.1.3. Extension of Conditional Event Definition (rule event) 
 

The standard BPMN has a Conditional (rule) event [89], which is triggered when its assigned 

Boolean condition evaluates to true. It can be used as a start or intermediate event in a process. 

Additionally, this type of event can be attached to the boundary of an activity, and it can interrupt an 

execution of the activity. The Conditional event is a type of Expression in BPMN. However, Expression 

is used in the BPMN specification [89] to specify an expression in natural-language. Nevertheless, these 

expressions are not executable, so we decided to extend them with rules in order to be executable, and 

to define more formally its behavior.  

 Therefore, we connected R2ML production rules to the BPMN Condition events in a rBPMN. 

We use production rules, because Conditional events are triggered when their conditions evaluates to 

true and then some other activities or events are invoked/triggered. That is, this corresponds to the 

behavior of production rules.  

 In Figure 106, we show an example of the following rule: if customers’ rental expected return 

date is less than current date (expected return date is passed) and the rental is still open (i.e., car has 

not been returned), then record bad experience on the customer and inform the customer about it. In 

Figure 106a, we show this rule as am rBPMN process, where we have a Condition event that is 

connected to the production rule shown in Figure 106b. When this rule evaluates to true, two tasks are 

invoked, including the Record Bad Experience and Inform Customer tasks.  
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a) rBPMN model for record bad experience 

decision 

b) Corresponding production rule 

Figure 106. Integration between production rules and start Condition event 

Conditional events can also be used if we want to invoke an activity, during execution of some other 

activity. This is possible if we attach an intermediate Conditional event on an activity edge and chose 

not to interrupt the activity.  

 In Figure 107, we show a modified business process for the rule shown in Figure 106b. In this 

case, during the execution of  the Car in rent task, if the condition of the attached production rule 

evaluates to true (rental car is not returned until expectedReturnDate – see Figure 106), the process flow 

goes to the Record Bad Experience and Inform Customer tasks. If the rule condition does not evaluate 

to true, the Customer has returned the car till the expected return date (intermediate message event from 

the Customer), and the sequence flow continues to the complex gateway. The complex gateway is used 

to select the first path that arrives and to ignore the others. Therefore, the Calculate Rental Price 

activity, will be invoked when the car is returned (message event) or during the execution of the Car in 

rent task (Conditional event with production rule – Cancel case), when for example, the rental can be 

extra charged. 

 
Figure 107. Integration between production rules and intermediate Condition event 
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3.1.4. Extensions for choreography modeling 
 

One of the main objectives for rBPMN is to model choreographies. The standard BPMN cannot 

capture several choreography aspects, as recognized in [25]. Those aspects include extensions of BPMN 

to allow the representation of multiple participants, correlation and reference passing. In order to fully 

support choreography modeling, we need to take into account these aspects. We describe these aspects 

in the rest of the section. Those aspects are: 

 

 Multiplicity of participants 
o Problem: In business process models, it is often needed to represent multiple participants of 

the same type (i.e. Pool), for example, multiple participants can involve in a conversation. 

o Solution:  for distinguishing multiple participants from one in the pool, we will use the 

“Multiple-instance participant” marker (denoted with ||| in the bottom part of the pool) which 

is introduced in [89]. This marker means that a pool represent not one, but one or more 

participants. 

 

 References 
o Problem: Following the previous problem, it is often needed to distinguish one participant 

from multiple participants, as we need to know, for example, which participants did some 

action in a process. 

o Solution: As introduced in [25], the main challenge with multiple participants is that we need 

to distinguish individual participants out of this set. The authors in [25] introduce references 

and reference sets as special data objects enhanced with <ref>, where a reference can be 

connected to a flow object via an association. Reference sets cover those cases where it is 

needed to select a subset of participants involved in one conversation. We base our rBPMN 

extension on reference sets, where we integrate both reference sets and references in one 

mutual concept call participant set, which may contain zero or more references to 

participants (see Figure 116). Every participant set could optionally have a name below the 

<par> annotation. Figure 108a shows an association from a receiving flow object to a 

participant set object. This association denotes that a message will be stored in the associated 

set. The actual participant reference in the set is represented by a participant reference object 

associated with a flow object. Figure 108b illustrates that an association emanating from a 

participant set leading to a task denotes that a message is sent to this participant. If an 

association leads to a receiving flow object (message event, task), a message from (a) 

participant(s) in this participant set is/are expected. When the participant set is associated 

with a multiple instance task or sub-process, this situation denotes that the loop will iterate 

over that participant set. We also retain references because of mapping to BPEL4Chor (see 

appendix B). 

 

  
a) b) 

Figure 108. Participant sets (graphical representation) 
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 Correlation information  

o Problem: Sometimes, it is not always known which participant sent a message, so that a 

returning message can be sent back to that participant. 

o Solution: Extending the abovementioned References, where an interaction partner in a 

participant set is certain, we propose an extension to BPMN message flows. We represent 

this extension by introducing an association from Message to Participant (see Figure 115). 

In the case when an interaction partner is not certain, the request message sent from a 

requester could carry the requester‟s identifier, which is then also contained inside the 

response message. 

 

A participant set object can be associated with message flows as presented in Figure 109, or with 

a pool in case of an interaction modeling. This realizes link passing mobility: The associated participant 

objects are referenced over the message flow. 

 

 
Figure 109. Passing a participant reference over the message flow 

In order to create choreographies by means of interaction models, one can use the Process concept from 

the rBPMN metamodel or the Choreography concept [89]. We prefer to use the plain Process concept, 

as the Choreography concept represents a narrower type of a workflow, which contain only three 

elements (activities): ChoreographyReference, ChoreographyTask, and ChoreographySubProcess. 

Choreography-based languages, such as WS-CDL [55] and as it is recognized in [22], need distinction 

between racing choices and racing choices. The first type of choices needs a data-driven XOR-gateway, 

because one participant decides which path to take, and we opt for using a rule gateway in this place, 

because rule gateway can support data-driven XOR-gateway behavior and enrich that behavior. The 

second type of choices need an event-based XOR gateway, because in the case of racing choices the 

first occuring event inhibits others from happening, and this is depicted by the event-based XOR 

gateways.  It is also needed to associate gateways and one of the pools in order to define who actually 

carries out the choice [22] (see Figure 112), as well as event annotations on messages, in order to 

represent start, intermediate or end of an interaction (see Figure 115). Pools are empty in interaction 

modeling and they are left for concrete orchestrations to implement. In section 4.2.5, we show 

mappings between rBPMN choreographies (interaction models) and rBPMN orchestrations 

(interconnection models), i.e., rBPMN interface behavior models, which represent individual views on 

the choreography from the side of one participant. These extensions in rBPMN are shown as an 

example in Figure 110.  

 In Figure 110, we show a simple Book loan request scenario as a choreography model. Here, we 

have the send and receive events for every message flow message. First, the Customer sends a book 

request to a Library. Then, the Library use a reaction rule attached to the rule gateway to check if the 
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requested book is available. If the book is available, the Customer is informed about that and the Book 

is sent to him. Otherwise, the Customer is informed that book is not available (in both cases by using 

message events). If the book is already rented to a customer, then exclusive event-based gateway is used 

to define a scenario when a user returns the book or when book return period is expired. By using these 

choreography models, we only define message exchanges and rules with owning side, and no 

implementation is defined for any participant in a process. 

 

 
Figure 110. Library use case for interaction (choreography) modeling 

 

3.2. Description of the rBPMN metamodel 
 

In the MDE context, a language besides its concrete syntax (textual of graphical) needs to have an 

abstract syntax,too. The rBPMN language has a graphical concrete syntax shown in section 3.1. In this 

section, we show its abstract syntax in terms of a metamodel. As shown in the previous section (3.1), 

the rBPMN language consists of the BPMN and R2ML language elements. Therefore, rBPMN 

metamodel is an integration of the BPMN and R2ML metamodels. The BPMN metamodel is shown in 

Section 2.3.3.8.2, while R2ML metamodel is shown in Section 2.4.3.1. 

In this section, we present main elements of the rBPMN metamodel. The overall rBPMN picture is 

shown in Figure 111, where we can see that the new rBPMN package, which we introduced, includes 

elements from the BPMN and R2ML packages (metamodels). This means that the rBPMN metamodel 

introduces some new elements that may depend on the BPMN and R2ML metamodel elements, but also 

rBPMN users can continue using elements of the BPMN and R2ML metamodels as well.  

 
Figure 111. rBPMN metamodel packages 
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 The Basic Core package in rBPMN is shown in Figure 112. In this package, we have main 

elements for modeling a business process, i.e., the Process, Participant (which represents Pool) and 

MessageFlow classes. These classes are usef to model collaborations, including a collection of Pools, 

their interactions (as shown by MessageFlows), and Processes. Collaboration is used to describe 

interactions between two or more roles represented as Participants within Pools. A Collaboration 

shows message exchanged (message flows) between two or more Participants (Pools). A Pool 

represents a Participant in a Collaboration. In this package, we added the executedBy association 

between the RuleGateway and the Participant. The association  is used to connect a RuleGateway with 

a Pool in an interaction model, in order to define which Participant actually carries out the choice in a 

choreography modeling scenario (an example is shown in Figure 110). 

 
Figure 112. Core package in rBPMN metamodel 

In Figure 113, we show the Process package in the rBPMN metamodel. We added the RuleGateway 

class in the Process package of the BPMN metamodel. RuleGateway is connected to R2ML Rule by 

using the rule association. In addition, RuleGateway inherits the BPMN Gateway class. In this way, we 

enabled that an R2ML Rule (that could be a Reaction, Derivation, Production or Integrity rule) can be 

placed into a business process as a Gateway, but at the same time, does not to break the R2ML Rule 

semantics. We should note here that one rule gateway could have one or more rules attached to it. In 

Figure 113, we can see that RuleGateway as a Gateway can be connected by using SequenceFlows with 

other FlowElements such as Tasks, Events and Gateways. This enables us to use rules in different places 

in rBPMN process models. In addition, we added an association to RuleSet from RuleGateway 

(ruleSet), in order to enable for using multiple rules with one rule gateway. We represented rule 

conditions/conclusions by using atoms, i.e., the ObjectClassificationAtom, ReferencePropertyAtom and 

PropertyAtom. We additionaly extended the R2ML metamodel in order to support rule conditions that 

are defined graphically. This includes a filter attribute in the Atom class that is used to represent a rule 

condition filter (i.e., “a > 5”) for an atom used. In addition, we have introduced an association from the 

AndOrNafNegFormula to the Rule, because an Atom needs to contain a relation to the rule, as an Atom 

represents the condition/conclusion of a rule in a model. We introduced a conclusionsAtom composition 

to DerivationRule. This composition  is used to denote that a derivation rule contains an Atom that 
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represents its conclusion. We added a composition between BPMN FlowElementsContainer 

andRuleSet, so that a Pool or a SubProcess can contain RuleSets on a diagram/model. In BPMN 

metamodel, we also inherited the FlowNode from the R2ML ActionEventExpression, in order to enable 

an activity invokation from a R2ML rule (by using the InvokeActionExpression). We also added an 

association between the SequenceFlow and the Rule, because we wanted to choose a rule on outgoing 

seqeunce flows from a rule gateway, as well as between the BPMN BusinessRuleTask and the Rule. In 

this way, we enabled that BusinessRuleTask can be implemented by using R2ML concrete rules 

(integrity, derivation, etc.). 

In order to support R2ML integrity rules, we created the OCLInvariant class, which are used to 

connect an integrity rule to the class by using an OCL invariant/constraint. 

 

 

 
Figure 113. Process package in rBPMN metamodel 

Activities are points in a process where some work is performed, and they reperent executable elements 

of a process. Activity is a FlowElement, and there are two main types of activites: Tasks (atomic 

activity) and SubProcess (complex activity). In Figure 114, we show extensions of the Activity package 

of the BPMN. In this package, we introduced BPMN tasks as event expressions, so that they can be 

triggering or triggered task of the R2ML Reaction rules (R2MLTriggeringTask or R2MLTriggeredTask 

class, respectively), or produced actions of R2ML Production rules. This package also contains a 
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modeling support for subprocess as triggering/triggered expressions and production actions for R2ML 

Reaction and Production rules, respectively (R2MLTriggeredSubProcess class). Along with support for 

tasks and subprocesses, we also added a modeling support for events and gateways by introducing 

classes R2MLTriggeringEvent, R2MLTriggeredEvent, R2MLTriggeringGateway and 

R2MLTriggeredGateway. By introducing these concepts, we enabled that an R2ML rule attached to a 

rule gateway can be connected to BPMN process elements, and by doing so we assured the traceability 

between the process (BPMN) and rule (R2ML) modeling elements. The main advantage of this solution 

is that we can model parts of the business processes by using rules and rule gateways. 

 
Figure 114. Activity extensions in rBPMN metamodel 

In the way presented in Figure 115, we can have a rule as a valid element in a business process, but we 

should also have a way to connect underlying data model to the business rule. In rBPMN, we use R2ML 

Vocabulary as an underlying data model, so that any BPMN message can be represented with an R2ML 

AtomicEventExpression element. We enabled this by introducing the R2MLMessageType class, which 

connects to the AtomicEventExpression class, and the R2MLMessageType class is a subclass of the 

ItemDefinition class, used to define an actual structure of a message. The AtomicEventExpression 

element is connected to MessageType, which is used to define actual message types. We additionally 

attached an OCL constraint to the R2MLMessageType class, so that we have the same MessageType 

connected to the same R2MLMessageType, through the connection with the AtomicEventExpression. 

Additionaly, we introduced the MessageEventAnnotation class, which we use to annotate a 

MessageFlow with an Event in an interaction model. 
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Figure 115. rBPMN data model 

In the rBPMN metamodel, the ItemDefinition element is used to specify a Message structure. Message 

is connected to ItemDefinition through the structureDef relation, i.e., a Message can have exactly one 

ItemDefinition. We extended these BPMN elements by inheriting ItemDefintion and we defined its 

subclass R2MLMessageType that can have R2ML AtomicEventExpression, through its structure 

attribute. In this way, rBPMN messages can directly be mapped to the rules‟ triggering events or 

triggered event expressions.  

In order to support modeling participant sets in rBPMN, used in interaction modeling to handle 

references to participants (see section 4.2), we added the ParticipantReferenceSet class (see Figure 116) 

as an FlowElement and ItemAwareElement (in order to be used as a source or target of a 

DataAssociation). We added an additional reference to ParticipantReferenceSet from R2ML 

ObjectClassificationAtom, so that we can use ObjectClassificationAtom in rule conditions. 
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Figure 116. ParticipantSet in rBPMN metamodel 

We also supported integration of R2ML production rules with BPMN ConditionEventDefinition, in 

order to support modeling scenarios as shown in Figure 106 and Figure 107. In Figure 117, we 

introduce an association between the BPMN CatchEvent class and the R2ML Rule class. This enables 

us to define a condition on a Condition event, in terms of R2ML production rules in the case when a 

CatchEvent has a ConditionalEventDefinition for its eventDefinitions (this is actually defined as an 

OCL invariant in Figure 117). 
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Figure 117. RuleEvent in rBPMN metamodel 

 

In order to support the connection and use of PML in rBPMN, we introduced a concept (class) 

named PolicyAnnotation (see Figure 118) in the rBPMN metamodel. By using this concept, we can 

attach PolicyAnnotation which has a reference to the R2ML Derivation rule, to the FlowElement (i.e., 

its subclass Task), Pool and MessageFlow. In addition, we introduced the PolicyAnnotationType 

element as the attribute of the PolicyAnnotation, in order to distinguish between diffrent policy types. 

 WS-Policy uses a WS-PolicyAttachment to attach its policies (expressions) to WSDL definition. 

WSDL definitions are used because BPMN 2.0 (and rBPMN) models are mapped to the BPEL/WSDL 

definitions in BPMN 2.0 specification [89]. The common policy attachment points in WSDL are 

(distinct policy subjects): service, portType and message elements. The Service policy subject 

corresponds to the service element in WSDL document. This means that a policy attached to the service 

will apply to messages associated with the port in the particular service (this affects all messages in 

WSDL document). A port type policy subject defines operations that include message description, 

while a Message policy subject allows for attaching a message description with a policy expression. By 

using these attachment points, we ensure that a services, portTypes and messages are used only when a 

policy attached to them is satisfied. This enables us to have more secure rBPMN business processes. 



Milan Milanović 

 

 

112 

 

 
Figure 118. Support for PML policies in the rBPMN metamodel 

 

3.2.1. Well-formedness Rules 
 

In this section, we show (main) well-formedness rules of the rBPMN metamodel expressed in the 

OCL language. The metaclasses defined in the metamodel have the following well-formedness rules. 

1) If a rule gateway has an event in its sequence flow just before it in a process, then a rule gateway 

must have at least one reaction rule attached to it. 

   context RuleGateway 

      inv: let sequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef = 

this)->asSequence()->first() in 

           sequenceFlow.sourceRef.oclIsTypeOf(Event) implies  

               this.rule->exists(e | e.oclIsKindOf(ReactionRule)) 

 

2) A Rule gateway, which has two outgoing sequence flows, must have excatly two rules attached 

to it. 

 
   context RuleGateway 

      inv: let sequenceFlows : SequenceFlow.allInstances()->select(c |   

                                  c.sourceRef = this)->asSequence()-> in 

           sequenceFlow->size() = 2 implies implies this.rule->size = 2 

 

3) A Reaction rule attached to a rule gateway, which has a task for its triggeredEvent, implies that 

a rule gateway, to which this reaction rule is attached, must be followed with this task in a 

sequence flow. 

 
context RuleGateway 

      inv: let rule : ReactionRule.allInstances()->select(c |   

               this.rule->includes(c))->asSequence()->first() in 

            let sequenceFlow : SequenceFlow.allInstances()->select(c |  

                   c.sourceRef = this)->asSequence()->first() in 

                  rule.triggeredEvent.oclIsTypeOf(R2MLTriggeredTask)   

                                 implies  

                                      sequenceFlow.targetRef.oclIsTypeOf(Task) 

 

4) Only one integrity rule is allowed to be connected to a rule gateway, so that we can have two 

outgoing sequence flows from such a gateway (for true and false rule evaluation results). 

 
   context RuleGateway 

      inv: this.rule->first()->oclIsTypeOf(IntegrityRule)  
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               implies this.rule->size() = 1 

 

5) In the case of derivation rules, attached to a rule gateway, we must have at least two rule 

attached to it. 

 
   context RuleGateway 

      inv: this.rule->first()->oclIsTypeOf(Derivationrule)  

               implies this.rule->size() >= 2 

 

The other well-formedness rules for rBPMN we have defined in section 4.3 following the rBPMN 

definition of workflow patterns. 
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3.3. Integrated Methodology for development of rule-driven SOAs 
 

In modeling of rule-ehanced business process models and taking into account the rBPMN language, 

presented in section 3.1, we need to introduce a method that should be used in using the rBPMN 

languages.  In order to use rBPMN language for modeling rule-enhanced processes, we first need to 

define basic concepts that such language should support for modeling SOAs, and how such an approach 

can be used in different situations. In order to model SOA-based processes by using abstract business 

process languages, we need to define specific steps that should be followed by a modeler. Those steps 

should include decisions, such as whether some decision should be modeled in a business process 

directly, or by using business rules. The basic requirements of our methodology is to enable modeling 

of a business process with effective mechanism for updating of a business logic, i.e., in this case with 

business rules. This is an important issue, as the usage of business rules enables flexibility to make 

changes in a business process, without changing the process itself. 

In Figure 119, we show our proposal for the methodology for developing rule-enabled SOAs. 

 
Figure 119. Phases in the development process of rule and policy enabled SOAs 

 

Our methodology is based on the MDE architecture, where development phases are applied in the 

iterative manner, in which various tasks are repeated until business requirements are satisfied. We use 

this methodology as the more agile methodologies such as the SCRUM are not suitable, because we 

planned to model large enterprise processes. The development phases in our methodology are: 

 Requirements specification, in this activity, a business analyst collects information about the 

application domain and business functions. The output of this specification is the project initiation 

document. 

 Process design is the phase of defining a general business process for the application. In this stage, 

using information from the initiation document from previous requirements phase, a process 

modeler defines an abstract business process model (by BPMN). This phase is particularly 

important because we need to choose a modeling approach (process or rule) by identifying points in 

a process that should be implemented by using rules.  

 Data design is the activity of defining a domain model by using the information collected during the 

requirements specification (stage 1). This phase may include some existing vocabularies. For this 
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phase, we need to extend BPMN by adding it underlying data layer (i.e., some existing vocabulary 

language, such as UML class models [1] or R2ML vocabulary). 

 Rule and Policy design is the activity in which rules and policies are added to the process. This 

activity includes creation of the rules and policies in the Rule editor. In this stage, we need to 

include different types of rules: integrity, derivation, reaction and production rules that can be added 

into process models.  

 Orchestration and choreography generation is the activity of generation of executable 

orchestrations (e.g., WS-BPEL [49]) or choreographies (e.g., WS-CDL [55]) from the rule- and 

policy- based business processes by using a model transformation approach [1]. This step can 

include some existing choreographies and orchestrations, by calling their services from the modeled 

process. Choreographies are activities of the same process orchestration, but between activities of 

different process orchestrations [30], while orchestrations are modeled activities, with their 

relationships, that are performed within a single organization [30]. 

 Implementation includes activities from implementation generation, e.g., choreography executability 

on some platform, work with UDDI registry, generation of support Java application, etc. 

 Operation is the activity of business process execution on the concrete platform. 

 

Every activity from Figure 119, which is connected to the box “Testing and requirements change“, is 

going to be tested regarding to the our methodology, and such testing could lead to the requirements 

changes. Following phases: Process design, Data design, Rule and Policy design, Orchestration and 

choreography generation, could be additionally annotated with some Semantic Description (like 

ontologies). As the output from these phases, we get abstract services, where concrete services for those 

abstract services are chosen in the Implementation and Operation phases by using QoS parameters of 

the concrete Web services. We should also mention that our approach is completely MDE based, and 

this means that processes and rules are represented as instances of rBPMN metamodel (see Section 9). 

As the primary objective of this dissertation is modeling of rule-enabled process models, we will 

describe in subsequent sections three primary steps from Figure 119 (steps 2, 3 and 4).   

 

3.3.1. Business process design 
 

In this step, we adapt the method from [30], in which we need to identify variable part of a process 

during the business process design. We adapted this method as it proposes usage of rules in variable 

points of process, so this makes it the most suitable solution in our case. This is the case as one our 

main requirements for management of changes of a business process is to isolate the parts that are 

changed oftenly from a static part of a business process. This method consists of two parts we describe 

in subsequent subsections. 

 

3.3.2. Identification of variable segments in a process 
 

This phase should result in variable and non-variable parts of a process. The variable points will 

be candidates for an implementation by using business rules. This step consists from several activities 

[30]: 

 In the first step, we defined a process with individual activities. This is important, as we 

need to separate variable activities from static activities in a process, because static 

activities will not be implemented by using business rules. 

 When a process is created, we need to identify which activities represent points of 

variability. Variable activites are those activities that cannot be directly executed, and they 

will be further specified. The static (executable) activities usually includes receive/request 

activities, or similar simple activities.  
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 When points of variability are identified, we need to estimate the level of variability, 

based on a several factors, as given in [30]. Those factors are:  

o frequency of changes: if changes are frequent, they need to be modeled by business 

rules, as it is easier to change separate business rules than to change the entire 

process at run-time. In this way, business users can change business rules, and the 

process changes will not affect the whole process. 

o implementation responsibility: implementation and modification of business rules 

is usually responsibility of business users, while implementation of business 

process is usually done by technical users. The modeling approach in this case 

depends on the role of the person (business or technical user) who will be 

responsible for the change. 

o understanding of implications: if an implication of a change cannot be easily 

understood, the scenario should be implemented by using business rules. This is 

the case if the effects of the change cannot be certain. Otherwise, the scenario can 

be modeled by the business process. 

o source of change: if the source of a change is like external (such as regulations), it 

should be modeled by a business process, as it is important to ensure that a process 

will be compliant to regulations and to track the event of a change. If the source of 

change is internal (in organization), it can be modeled by business rules, so that 

they can be reused. 

o scope: the scope defines if the impact of a business change is focused on an 

activity, a process or a whole organization. In the case of organization-wide 

changes, the modeling by business rules is suggested, as rules can be reused 

through the whole organization. Otherwise, if a change focuses on a single activity, 

only that process needs to be modified. 

 

The decision framework that includes five given factors is shown in Table IX. We should note that this 

framework needs understanding of a change, as well as its context. 

 

Table IX. Modeling approach decision framework (adapted from [30]) 

 

Business rules                                                                                               Business processes 

Frequency Hourly Daily Weekly Monthly Annually 

Implementation 

Responsibility Business User 
Business 

Analyst 

Business / 

System 

Analyst 

System 

Analyst 
Programmer 

Understanding 

of implications 
Very Low Low Medium High Very High 

Source of 

Change 
Internal Subdivisions Divisions 

Business 

Partners 

External 

Agencies 

Scope Company-

Wide 
Multi-Process Process Activity 

Whithin 

Activity 

 

3.3.3. Identification of appropriate software patterns 
 

When we identified all variability points, and decided that those points are to be implemented by 

using business rules, we need to choose the workflow patterns needed to model concrete variability 

point. For example, if a variability point needs to be defined as a sequence of parallel activities, the 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

117 

 

Parallel Split pattern should be used. If one of several activities needs to be chosen, the Exclusive 

choice pattern is used.  

In Table X we give an overview of workflow patterns based on a common variability points that 

may occur in a process design. Detailed usage of rules in workflow patterns can be seen in section 5. 

 

Table X. Usage of workflow patterns for variability points 

Pattern 

group 

Pattern Usage of rule-enhanced pattern in a process 

   

B
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ic
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n
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l-

fl
o
w

 p
at

te
rn

s Sequence Activities can be given in sequence. 

Parallel Split Activities can be given in parallel. 

Synchronization Parallel activities needs to be joined. 

Exclusive Choice One activity need to be chosen from several. 

Simple Merge Activity needs to be executed when any preceding activity ends. 
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d
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ch
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d

 

sy
n

ch
ro

n
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n
 

p
at

te
rn

s 

Multi Choice One or more activities needs to be performed. 

Multi Merge Two or more branches needs to be converged into a single branch. 

Discriminator Activity is started when one of the preceding (usually parallel) activities 

complete. 

Synchronizing Merge Convergence of two or more branches into a single subsequent branch, 

where preceding activities needs to be synchronized. 

S
tr

u
ct

u
ra

l 

p
at

te
rn

s 

Arbitrary Cycles Section of a process needs to be repeated. 

Implicit 

Termination 
Process should be terminated when there are no remaining activities to be 

completed. 

M
u

lt
ip

le
 I

n
st

an
ce

s 
p

at
te

rn
s 

MI without synchronization Multiple instances of an activity need to be created. These instances are 

independent of each other and run concurrently. 

MI with a Priori 
Design Time 

Knowledge 

Many instances of one activity are needed to be created, and the number of 

instances is known at design time. 

MI with a Priori 

Runtime 

Knowledge 

Many instances of one activity are needed to be created, and the number of 

instances is variable. 

MI without a 

Priori Runtime 

Knowledge 

Many instances of one activity are needed to be created, however the 

number of instances is not known at design-time, nor it is known at any 

stage during runtime, until immediately before the instances of that 

activity type need to be created. 

S
ta

te
-

b
as

ed
 

p
at

te
rn

s Deferred Choice One of several possible branches needs to be chosen, where only one of 

the alternative activities is executed. 

Milestone 
An activity is enabled until a milestone (specific state) is reached. 

C
an

ce
ll

at
i

o
n
 p

at
te

rn
s Cancel Activity 

Activity needs to be cancelled. 

Cancel Case 
Business process instance need to be cancelled. 

 
Along with the workflow patterns, proposed in the original method from [30], we adapt this method by 

introducing a new group of patterns, business rules patterns for agile business processes for advanced 

dynamicity of a process (see section 4.4) and Service interaction patterns, which are used during 

modeling of choreographies (see section 4.2). Business rules patterns for agile business processes 

include integration of derivation, constraint and process rules. By using these patterns, we enable 

improved dynamicity in orchestrations. An example of using patterns for agile business processes in 
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modeling of business processes (orchestrations) in rBPMN language can be found in section 5.3. On the 

other side, Service interaction patterns describe simple and complex message exchange in 

choreography, and these patterns can be used to improve choreography modeling. An example of using 

Service interaction patterns in modeling of business processes (choreographies) in rBPMN language can 

be found in section 5.2. 

 

3.3.4. Data design 
 

Data represent an important aspect in a business process design, as business process activities 

operates on data. Data dependencies between activities in a business process are represented by data 

flow, where each activity has a set of input and output (data) parameters. The input data parameters 

came as the input for the activity at its start, and the output parameters are generated at the activity end.  

A data flow in a business process is represented by a data flow graphical constructs, so that data 

can be visualized and validated. Data flow represents a transfer of data between activities. In a business 

process, a data flow is represented by messages that annotate a message flow, which brings messages as 

activity parameters. In this step, we need to create a common vocabulary (among rules and a process) of 

key terms that will be used in the next step of our methodology (rule design). The common vocabulary 

includes naming of all business objects (facts), constraints (attribute values, cardinalities), as well as 

relationships between those objects.  

A common vocabulary, in our methodology, is defined by using R2ML vocabulary concepts 

(see 2.4.3.1.5). In such a common vocabulary, all entity types and their properties (represented by 

attributes of entity types) are defined graphically. Such entity types can be used to annotate data objects 

and message flows in a business process model, as well as to be used in a rule specification (see section 

3.3.5). Message flows are annotated with messages that have entity types from the vocabulary; these 

entity types are in fact types of messages that they annotate. Such messages represent input parameters 

for activities, and they can also represent output parameters. 

The common vocabulary definition is a prerequisite to the next rule design step, because rules 

use vocabulary concepts in their definition (for conclusion, condition and action parts). Once defined, 

the common vocabulary (or external vocabulary) can be used in different business processes, along with 

rules in rulesets that references those vocabularies. 

 

3.3.5. Rule and policy design 
 

After workflow patterns are identified for a concrete scenario and the common vocabulary have 

been defined, we can define the rules to implement workflow patterns in order to model the process.  

First, based on a chosen workflow pattern (see section 4.3.), we chose the rule type and model the 

business rules (reaction, production, integrity and derivation rules) by using the URML notation. During 

rule design, we use the defined common vocabulary in order to define rule actions and 

conditions/conclusions. Since we define integrity rules as OCL constraints on vocabulary concepts, 

during the common vocabulary design, we can attach those constraints to the designed concepts. In 

addition, the rule design must include the workflow pattern context (number of input and output flows, 

multiple instances of an activity, etc.). In this step, we can include rules defined in some other language, 

by transforming them to the R2ML language. 

Second, when rulesets are created, we model the concrete business process, where we introduce a 

rule gateway, and connect it to the created rules. In this step, we model the rest of the business process, 

which is not modeled by rules. When the rules are integrated into a business process by employing rule 

gateways, we need to annotate the business process with messages, which are used in the rule design, 

from the common vocabulary. If a rule need to include some activities (subprocesses) in its triggering or 

triggered event parts, the rule can be modified in order to include those activities or subprocesses.  
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When the process is defined and all errors have been corrected, the process can be deployed on a 

business process engine (extended with a rule engine), or it can be translated into executable WS-BPEL 

orchestration or choreography. During the process lifetime, the business process will be changed based 

on changing requirements, and both business process parts (static and rule-enhanced) will influenced by 

this changes. If a change affects only the business rules, we only need to change those rules or to adapt 

them to support new requirements. On the other hand, if a change affects the static part of a business 

process, we need to decide whether that process part should be changed, or it should be considered as a 

variability point and modeled by business rules [30]. This method enables us to make the process more 

efficient, as the process can be adapted more flexible on changes that occur.  

Along with business rules, we can also model policies by using the PML language, which are 

represented by extended derivation rules, as shown in Section 2.4.3.3. Those policies can be then 

attached to different parts of a process, and then transformed into annotated executable service 

compositions by using model transformations between policies and concrete policy languages [56]. 

Details about modeling common vocabulary, as well as rules and policies in a business process, are 

given in section 5. 

 

3.4. Mapping of rBPMN to service execution language 
 

In this chapter, we describe our proposal for mappings of the main elements of the rBPMN language 

into service composition languages (i.e., BPEL [49] and BPEL4Chor [23]). We also present a new 

framework for integration of rules into a service execution engine. We choose to use BPEL, as it is 

capable to represent service orchestrations (interconnection models), while its extension, BPEL4Chor 

introduces additional constructs to represent choreographies (interaction models) with internal behavior 

[61]. In addition, we propose architecture for integration of rules into the BPEL engine. 

 

3.4.1. Mapping rBPMN constructs to orchestrations (WS-BPEL) 
 

Mappings of the rBPMN constructs follow the mappings of the BPMN to WS-BPEL language 

described in [89], as the rBPMN language extends the BPMN language from the same proposal [89]. In 

this section, we first give short a introduction of the basic mappings between BPMN and BPEL from 

the BPMN proposal specification [89]. Second, we show how new elements, which we introduced in 

rBPMN, are mapped into WS-BPEL elements and what software architecture is needed to support this 

mapping. Third, we describe the framework (infrastructure) for the integration of business rules into a 

BPEL-based process.  

Basic mappings between between BPMN 2.0 and WS-BPEL are show in appendix A, and theese 

mappings are defined in the OMG BPMN 2.0 specification [89]. 

 

3.4.1.1. Integration of rules into BPEL 

 

Integration of rules into service execution languages/engines is a complex task, because both, service 

execution languages and rule languages are based on different paradigms. There are two main 

approaches for integration of these languages: (1) a tightly-coupled approach and (2) a loosely-coupled 

approach, as described in section 2.5. We decided to follow a loosely-coupled approach, as the tightly-

coupled approach has some drawbacks as reported in [113]. The drawbacks of the tightly-coupled 

approach are caused by the idea that an orchestration engine needs to communicate with a rule engine. 

However, the BPEL speicfication does not propose any BPEL API that will enable for accessing the 

BPEL engine. In addition, it is convinient to provide business rules as a service, as the same rules can 

be reused in different business processes. 
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We decided to map rule gateways by using BPEL <invoke> activities, based on the solution from 

[42], which is used to invoke a Rule service. In an <invoke> activity‟s outputVariable, we will have a 

rule decision, which is usually some boolean value. Based on this value, we can define different source 

links for a invoke activity, where each source link will be constrained by a transitionCondition, which is 

directly mapped from the rule gateways‟ outgoing sequence flow conditions (rules).  

 In Figure 120, we show an example, in which the Rule service is called directly. In the example, 

both the Port Type and the Partner Link reference the RuleService and sources link transition conditions 

(Link1 and Link2) of the <invoke> activity are based on the return value (ruleDecision output variable) 

from the checkRule operation invocation. Each of the outgoing sequence flows from the rule gateway is 

mapped to separate link elements. Based on the name of the invoke activity, the corresponding rule is 

invoked by the RuleService. The incoming sequence flow to the rule gateway is mapped to a <target> 

part of the <invoke> BPEL activity. The input data for a rule are passed through the inputVariable 

attribute of the <invoke> activity, while the rule output is returned through the outputVariable attribute, 

of the same <invoke> activity. The inputVariable value of the <invoke> activity is mapped to a rule 

input variable, while outputVariable of the <invoke> activity is mapped to a rule output variable, or a 

rule decision (boolean), in the case of integrity rules. In the case of triggering event expressions of the 

reaction and production rules, those expressions are mapped together with rule conditions to the 

corresponding source and transitionCondition of the <invoke> activity. If a rule evaluates to true, 

source will contain activity referenced by a rule. To alter the decision logic, it is needed to change the 

Port Type, the Partner Link and the transition conditions as well as to redeploy the business process, if 

the number of decisions (outgoing flows) changes or if a rule type is changed. In the case that we need 

to handle a constraint violation, we will use a catchAll block inside the <invoke> activity, to call 

another activity that will handle the caught constraint violation. 

This solution employs a graph-oriented structure of BPEL [62]. That structure is convenient for 

mapping from/to rBPMN, as rBPMN also has a graph-oriented structure. This means that we can 

directly map rBPMN tasks into BPEL activities, and BPMN sequence flows into BPEL links. The main 

difference between rBPMN and BPEL graph-based models is in how conditions are specified. In 

rBPMN they are specified by using complex or rule gateway, while in BPEL by combining expressions 

on control flow links and join conditions.  

 

... 

<invoke name=”ruleName” operation=”checkRule” partnerLink=”RuleService” 

portType=”s1:RuleService” inputVariable=”ruleData” 

outputVariable=”ruleDecision” ...> 

   <targets>...</targets> 

   <sources> 

 <source linkName=”Link1”> 

        <transitionCondition> 

            <![CDATA[return ruleDecision.booleanValue();]]> 

        </transitionCondition> 

      </source> 

      <source linkName=”Link2” > 

         <transitionCondition> 

            ... 

         </transitionCondition> 

      </source> 

   </sources> 

...  
Figure 120. BPEL Implementation – rule gateway realized using BPEL links with transition conditions 
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Another way to implement a rule gateway‟s conditions in WS-BPEL is to use an if statement, as shown 

in the example in Figure 121. The direct linkage to the RuleService is to decide whether a decision 

result is true or false. This service enables for decoupling the decision logic from the business process. 

However, in this case, before the <if> activity, we also need to call the RuleService, by using the 

<invoke>  activity, in order to get the value for outputVariable. This value can then be used in <if> 

conditions to choose appropriate activities. 

This solution shown in Figure 121 employs a block-structured nature of BPEL [62]. This is 

important, because not all BPMN graph-structures constructs can be represented in BPEL, such as loops 

(i.e., arbitrary cycles [62]). This means that in some cases, BPEL is constrained to its block-structured 

constructs. 

 
<invoke name=”ruleName” operation=”checkRule” partnerLink=”RuleService” 

portType=”s1:RuleService” inputVariable=”ruleData” 

outputVariable=”ruleDecision” .../> 

... 

<if> 

 <condition> 

   <![CDATA[return ruleDecision.booleanValue();]]>”> 

 </condition> 

 ... 

 <elseif> 

  <condition> 

  ... 

  </condition> 

 </elseif> 

 <else> 

  (optional) 

 </else> 

</if>  
Figure 121. BPEL Implementation – rule gateway realized using a BPEL switch condition statement 

 

3.4.2. Mapping rBPMN constructs to choreographies (BPEL4Chor) 
 

In order to translate rBPMN interaction models into executable choreographies, we need to translate 

main rBPMN elements to elements of a choreography description language. We choose BPEL4Chor 

[23], because we can reuse the mapping between rBPMN and BPEL from appendix B, which includes 

the integration of rules into BPEL. In addition, we choose to use BPEL4Chor, as we have introduced 

some of its concepts in rBPMN (see section 3), in order to model choreographies successfully. A 

mapping of rBPMN choreography-based constructs to BPEL4Chor is then straightforward. We 

organized this mapping in three main parts: generation of participant types in a participant topology; 

creation of participant references and participant sets; and generation of message links from the 

message flow. These three parts represent a participant topology (structural aspect of choreography). 

Additionally, after defining the topology, Participant behavior descriptions (control flow and data flow) 

and optionally a Participant grounding (links to WSDL definitions) is needed to be defined, as described 

in [24]. 

More details about this mapping can be found in appendix B. 

 

3.4.3. Architecture for integration of rules into BPEL 
 

In order to use and invoke rules in a BPEL business process, it is needed to integrate a BPEL 

orchestration engine with a rule engine. A possible architecture for such integration is an Enterprise 
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service bus [113], which is actually a service middleware on which a BPEL engine and a Rule Broker is 

connected (see Figure 122). The Rule Broker is used to unify access to different rule engines. In 

addition, Rule Interceptor Service is needed to bridge between rules and BPEL process, i.e., it intercepts 

each BPEL Web service call to apply business rules.  

 

 
Figure 122. Service-Oriented Approach (adapted from [113]) 

However, this type of integration involves introducing a whole new architecture with Enterprise 

service bus and Rule broker. We consider a simpler solution, where rule service is provided in a form of 

Web services. Therefore, a rule engine may expose a WSDL interface for accessing different rules or 

rulesets (as shown in Figure 123). This solution enable us to change rule engines dynamically; that is, it 

is only needed to use the same WSDL interface for accessing rules. 

 

 
Figure 123. Business rules exposed as a service (adapted from [48]) 

The Rule Service can be implemented similarly to the Rule Broker [113]. The Rule Service actually 

represents a Web service interface to the rule engines (see Figure 124). It is modular, and by using 
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Business Rule Adapter (that can be realized by using Java Rule API [51]) different rule engines can be 

pluged-in and used. Generation of WSDL interfaces for the Rule Service is based on a rule and a rule 

gateway description call for a particular process. Therefore, each business rule is exposed as a service, 

and it can be used in different BPEL processes. 

 

Figure 124. Rule service architecture (adapted from [113]) 

An example of a Business rule broker implementation is already analyzed, and its proposed prototype 

can be found in [114]. The proposed realization of the Rule broker is done in Java by using Java Rule 

Engine API [51]. The Rule broker is based on the IRuleEngine interface, which must be implemented 

by any rule engine adapter. The IRuleEngine interface has an executeRules method, which is used to 

execute rules in a knowledge base. The RuleEngineProxy is the class used to communicate with the 

Rule broker. It uses a PluginManager to load installed adapters and it keep references to these adapters, 

too. 
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4. Modeling Service and Process Patterns in the rBPMN Language 
 

In this section, we show how the rBPMN language can be used to model Message Exchange Patterns, 

Service Interaction Patterns for choreography modeling and Workflow (control) flow patterns for 

orchestrations modeling. In these patterns, we illustrate the possible benefits from the introduction of 

rBPMN. 

 

4.1. Representation of Message Exchange Patterns in rBPMN 
 

In order to represent basic SOA concepts by using rBPMN, we will first show how the basic 

message exchanges in SOA can be modeled in rBPMN. Such message exchanges between Web 

services are typically represented by using the Message Exchange Patterns (MEP) [137]. They define 

what type of messages (including faults) can be exchanged and in what order. Regardless of how 

complex tasks performed by a Web service are, almost all of them require the exchange of multiple 

messages [31]. It is important to coordinate these messages in a particular sequence, so that the 

individual actions performed by the message are executed properly. MEPs are a set of templates that 

provide a group of already mapped out sequences for the exchange of messages [31]. The following 

MEP definition states that “[a] MEP specifies in a reusable manner the ability of a service to receive 

and/or send messages. It describes the set of exchanged messages in terms of their order and 

multiplicity, i.e. whether a message is sent to or received from a single node or whether a message is 

sent to or received from multiple instances of a node. Optionally, different node types can also be 

identified” [86]. This means that MEPs define how services should be used, as they can coordinate input 

and output messages related to a certain operation. The WSDL 2.0 specification defines three MEPs 

[137]:  

 In-Only pattern – supports a standard fire-and-forget pattern (i.e., only one message is 

exchanged);  

 Robust In-Only pattern – is a variation of the In-Only pattern that provides an option of sending 

a fault massage, as a result of possible errors generated while transmitting, or processing data; 

 In-Out pattern – presents a request-response pattern where two messages (input and output) 

must be exchanged. 

However, WSDL 2.0 specification offers the possible use of five more patterns, introduced as 

additional patterns [138]: 

 In-Optional-Out pattern – is similar to the In-Out pattern with the following exception: sending a 

message that represents a response is optional, and because of this, a requester that has started a 

communication should not expect this message; 

 Out-Only pattern – consists of exactly one message, and is most often used for message 

notification; 

 Robust Out-Only pattern – presents a variation of the Out-Only pattern that provides an option 

of sending a fault massage; 

 Out-In pattern – consists of exactly two messages, but in this case, a service provider is the one 

that initiates the exchange of messages; 

 Out-Optional-In pattern – is opposite to the previous pattern, where the input message is 

optional. 

Generally, MEPs are divided into two major groups depending on which side initiates an 

interaction. In-bound patterns are two initiated by a service requestor, i.e., the interaction starts with an 

incoming message. Out-bound patterns are imitated by a service itself, i.e., the interaction starts with an 

outgoing message. The rest of the section in organized into the subsections as per this MEP 

classification. These sections illustrate how each of the abovementioned patterns can be modeled by 
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using rBPMN. In this section we use the case study of service-oriented distributed health information 

systems. Such systems require collaboration between different public and private section parties (e.g., 

health care establishments, insurance companies and police). The general problem of the use of BPMN 

in this problem has been discussed elsewhere [112]. Here, we focus on fragments of processes, MEPs 

and the role of business rules in such interactions. 

 

4.1.1. WSDL 2.0 In-Bound MEPs 
 

The in-bound patterns are patterns where the interaction is initiated by a service requestor, that 

is, a service first receives the message. In this section, we represent first every MEP in the standard 

BPMN and followed by their mapped and refined versions represented in rBPMN. 

4.1.1.1. In-Only 

 

The In-Only pattern consists of exactly one message received by a service from some other node 

(i.e., service requestor), where no fault message may be generated. In Figure 125, we show how the In-

Only pattern modeled first in the standard BPMN and then mapped and refined in rBPMN. We 

represent partners in the message exchange as BPMN pools (given that BPMN pools are used for this 

purpose).  The exchange of the message is represented with the corresponding BPMN message flow 

between collaborating pools. The message flow is annotated with the message (i.e., getInfoRequest). By 

their basic definition, each service is described by its interface consisting of an operation, which is 

communicated with through input and output messages. Thus, each operation is modeled through 

BPMN tasks (e.g., getInfo), given that BPMN tasks can send and receive messages. Finally, an rBPMN 

model of a Web service is following our previous work [111], where each service can be modeled by a 

reaction rule – input message is a triggering event, rule condition is a condition for invoking/executing 

the service, and the service operation is the triggered action.  

 

Figure 125. Model of the In-Only pattern in rBPMN  
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In the right part of Figure 125, the rBPMN “Inform police” activity sends a message “getInfoRequest” 

that triggers the rule gateway through a message event. The receipt of the message is represented by 

using a message event, as gateways in BPMN cannot receive messages (i.e., to be able to trigger our 

reaction rule modeling the web service). The rule gateway defines a Web service (e.g., whose operation 

is called “getInfo”), while the message event (received from the service client such as EHR Locator) 

connected to the rule gateway (i.e., the triggering event) models the input message of the service. As per 

our definition of the rBPMN metamodel, our rule gateway from the figure has to have a reaction rule 

associated with it. This establishes an explicit tractability between the rule gateway of Figure 125 and 

the rule‟s full definition represented in R2ML and graphically shown in URML. This enables to further 

define the rule with (post-)conditions and connect the service definition with the vocabulary elements as 

shown in Figure 126. Furthermore, there is an explicit traceability between the annotation of the 

message exchanged in Figure 125 and the message type from the reaction rule of Figure 126, which also 

provides the complete definition of the message.  

 

Figure 126. Associated reaction rule to the rule gateway for the rBPMN model of the In-Only pattern 

shown in Figure 125 

In this pattern, we used a reaction rule attached to rule gateway because reaction rule has an event for its 

input, so when a message event happens it fires the reaction rule. In this case, a production rule cannot 

be used, as production rules are not triggered on an event, but rather on an true condition. The use of 

reaction rules is convenient because we can model an input message and output service activity. By 

using the rule gateway in this MEP, we add additional elements of the business logic, which overcome 

the definition of Web services and this pattern given in their W3c specification. Namely, this rule 

gateway can define a condition under which the modeled service can be used, once the input message 

has been received. Most importantly, this condition can be updated both at run- and design-time. For 

example, this condition can define from which partner service our modeled service can process 

requests. Another important implication of our model is that from this rule, we can generate not only the 

complete WSDL description, but also Java definition that encapsulates the service logic, which might 

generally not be visible to the service users. 
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4.1.1.2. Robust In-Only  

 

This pattern can be considered a variation of In-Only. It also consists of exactly one message 

received by a service, but in this case, faults can be triggered by the message as specified in the 

Message Triggers Fault model. This Fault model and other fault models are described in [137]. 

Message Triggers Fault is a rule, which says that any message in the interaction might trigger a fault 

message, which must have the opposite direction from the triggering message. In the case of Robust In-

Only, the input message might trigger a fault message, which has to be sent to the service requestor. In 

Figure 127, we show how the Robust In-Only pattern is originally modeled in the standard BPMN and 

then mapped and refined in rBPMN. For this pattern, we introduce the Exception handler subprocess, 

which is used to send the fault message to the service requestor.  

 

Figure 127. Model of the Robust In-Only pattern in rBPMN 

In the right side of Figure 127, the input message modeled by a message event. The rule gateway, 

which models the web service, is placed in a subprocess. This is done in order provide a common 

mechanism for exception handling (i.e., Exception handler) of different types of errors that might 

happen in this pattern. We identify two possible types of errors for a "Message Triggers Fault" model. 

The first type of an error is caused by the business logic that the rule gateway models. This means that 

the condition of the rule gateway is not satisfied. This will result in an exception event (i.e., the else 

branch of the reaction rule – the outgoing arrow of the rule gateway with the backslash). Given that the 

 symbol is attached to the rule gateway subprocess, the generated error will be processed by the 

Exception handler. The handler generates the fault message (i.e., “getRequestFault”) to be returned to 

the service requestor . The condition of the rule gateway is to decide whether the activity “getInfo” (i.e., 

the service operation) should be invoked or not. The second type of error is the exception that can be 

raised as a result of the execution of the internal logic encapsulated into the “getInfo” task. In this case, 

the “getInfo” task can throw an exception, which is handled by the Exception handler. The Exception 

handler returns the fault message (i.e., getRequestFault) to the sender by employing the same procedure 

used in the first type of exception.  



Milan Milanović 

 

 

128 

 

It is important to emphasize that by using the rule gateway, we have been able to separate fault 

messages that are the result of the internal service error from those that are the result of an exception of 

the service execution. The reaction rule connected with rule gateway from the rBPMN diagram has an 

equivalent rules further refined in the R2ML represented in Figure 128. 

 

Figure 128. Associated reaction rules to the rule gateway from the rBPMN model of the Robust In-Only 

pattern shown in Figure 127 

For the Robust In-Only pattern, we have two R2ML reaction rules that are associated to the rBPMN 

gateway. Both rules are triggered on the same triggering event, but the difference is in their conditions. 

The condition for rule 1 is the negated condition of rule 2. That is, when the condition is true, rule 2 is 

fired and its action (i.e., triggered event) is executed (i.e., “getInfo” task). When the condition is false, 

rule 1 is fired and the error event is generated. The introduction of two rules is done to avoid assuming 

that the implementation rule language of the modeled business logic might have support for else 

branches, which might cause different reasoning problems. 

While translating this model into its implementation, we have two options for translating the 

condition of the rule gateway. One option is to implement it as a condition in the beginning of the 

implementation of the “getInfo” task (e.g., in the beginning of a Java method that implements the 

business logic of the service). Otherwise, this condition can be implemented by using a rule language. 

An advantage of using a rule language is the support to declarative approach, including rule 
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externalization and share between applications, faster changes, etc. As well, we do not need to change 

the service logic anymore in its lifecycle even though the conditions under which the service can be 

changed. 

Figure 128 also indicates the fully established tractability between the elements of rBPMN and 

R2ML. Namely, all BPMN tasks (e.g., “getInfo”) and messages (e.g., “getInfoResponse”) have their 

counterparts in R2ML. The tractability is established through the rBPMN metamodel. Yet, the 

combination of BPMN and R2ML fully complements each other (e.g., message type definition). 

4.1.1.3. In-Out  

 

This pattern consists of exactly two messages: a message received by a service (i.e., input 

message) from some other node, followed by a message (i.e., output message) sent to the other node. 

The second message may be replaced by a fault as specified in the "Fault Replace Message" model 

[137]. The Fault Replace Message model defines that a node, which generates a fault after receiving the 

input message, replaces the output message with a fault message and sends back the fault message to 

the sender of the input message. In Figure 129, we show the model of this pattern in both the standard 

BPMN and rBPMN. 

 

Figure 129.  Model of the In-Out pattern in rBPMN  

In Figure 129, the BPMN task “Request Patient Info” invokes the “getInfo” service operation by 

sending the “getInfoRequest” input message. The invoked operation returns the “getInfoResponse” 

message. The message flows between the two pools are annotated by these two messages. The rule 

gateway, which models the web service, accepts the input message as its triggering event. The triggered 

activity of this reaction rule is the BPMN task “getInfo”, which represents the execution of the service 

itself. In this pattern, similar to the In-Only pattern, we can define a condition of the rule gateway, 

which defines when the “getInfo” task can be performed.  

In Figure 130, we show the reaction rule that is associated with the rule gateway of the rBPMN 

model from Figure 129. In this reaction rule, it is important to notice that the triggered event part of the 

rule is a sequence of the “getInfo” action and the “getInfoResponse” output message. This fully 

captures the semantics of the execution of services – the executing of the service followed by the output 

message.   
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Figure 130. Associated reaction rule to the rule gateway from the rBPMN model of the In-Out pattern 

shown in Figure 129 

When the service returns a fault message in this pattern, we have a similar situation to the 

Robust In-Only pattern. Figure 131 shows the rBPMN metamodel of the In-Out pattern where a fault 

message replaces the output message. 
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Figure 131. Model of the In-Out pattern (with fault replaces message) in rBPMN  

The In-Out MEP from Figure 131 is actually the same as the one from Figure 129. The only 

difference is that the rule gateway can lead to the generation of an error end event (which is then 

handled with “Fault Handler”). This happens when the condition of the rule gateway is not satisfied. 

Similar to the model of the Robust In-Only pattern, we also distinguish between two type of exceptions: 

i) those that are generated when the condition of the rule gateway evaluates to false, and ii) those that 

are generated as a result of the execution of the internal service logic. When the input message is 

received from a sender, the Fault message can be returned to the sender in both fault cases by using 

Exception handler. In the first case, when the condition of the rule gateway evaluates to false, the 

sequence goes to the error end event in the subprocess. In the second case, an error may be generated 

during the “getInfo” task execution. In both cases, the Fault Handler, which is attached to the border of 

the subprocess, will invoke Exception handler to return the fault message to the sender. Thus, we enable 

exception handling in a unique way. 

In Figure 132, we represent the R2ML reaction rules that are associated with the rule gateway 

from Figure 131. The full definitions of the conditions for rule gateway are fully specified in the 

reaction rules. Both rules are triggered on the same triggering event, but the difference is in their 

conditions. These rules means: On patient information request, if the user is registered and provides 

valid credentials, retrieve the retested information and notify the user. This pattern is similar to Robust 

In-Only pattern, where we also have two rules. However, the main difference is related to the case when 

the condition evaluates to true (i.e., rule 2 is triggered), then the sequence of the “getInfo” task and the 

“getInfoResponse” message is performed. In the case of the Robust In-Only pattern, we have only the 

“getInfo” task, since the output message is not generated.  
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Figure 132. Associated reaction rules to the rule gateway from the rBPMN model of the In-Out pattern 

(with fault) shown in Figure 131 

4.1.1.4. In-Optional-Out  

 

This pattern consists of one or two messages: a message received by a service from some other 

node (i.e., input message), optionally followed by a message sent to the other node from the service 

(i.e., output message). Each message may trigger a fault in response as specified in the "Message 

Triggers Faults" model. In this MEP, the service could return a (fault or regular) message to its invoker 

as shown in Figure 133. 
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Figure 133. The In-Optional-Out pattern modeled in rBPMN  

In the right part of Figure 133, we can see that the rule gateway could invoke the “getInfo” task or 

generate an error end event. Which of these sequences paths will be followed depends on the evaluated 

value of the condition of the rule gateway. After executing the “getInfo” task, a sub-process either ends 

or returns a (output) message to the service requester. This decision depends on the evaluation of the 

condition of second gateway. How to implement this optional decision (i.e., how can a service decide 

whether an optional message should be send or not) is not defined precisely in the specification of 

MEPs [137]. Because of this weak definition, we added a general data-based gateway after the 

“getInfo” task, so that a decision whether the message should be returned or not, can be taken based on 

data that could be changed in the “getInfo” task. This data gateway could be replaced with a rule 

gateway in order to capture even more advance business logic based on which the decision of returning 

the output message is sent.  

In the case of this pattern, it is also important to notice that we provide the same support for 

exception handling, as we have already described on the In-Out pattern.  

 

4.1.2. WSDL 2.0 Out-Bound MEPs 
 

The out-bound patterns are patterns where a service first sends a message (i.e., output message 

goes first). In the following subsections, we present all the out-bound patterns. Their models in the 

standard BPMN are the same as models of the in-bound patterns with the main difference related to the 

direction of the message exchanged between different collaborating pools. In this subsection, we 

primarily focus on the description of the rBPMN models of outbound patterns. Given the nature of 

outbound patterns where the service initiates the interaction, there is no need to model services with 

reaction rules. That is, a reaction rule (i.e., service) is not triggered with an input message. In this case, 

the trigger for the service execution and for sending the output message is coming from the business 

logic captured on the side of the service. This might be a result of the change of the information state of 

the service side or some internal event. However, from the perspective of the service requester, this is 

not seen as reaction rule. Yet, we want to model message exchange patterns in a consistent way by 

using rBPMN rule gateways. In general, such rule gateway has a production rule associated, which 

indicates the condition under which the service is triggered, and consequently the output message sent. 
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This modeling approach also allows for generation of the complete service descriptions, similar to what 

we discussed with the inbound services.  

We should note that outbound patterns are not so extensively discussed in the research literature 

comparing to the inbound patterns. There are very few (if any for all patterns) examples publicly 

available. There even is a lot of debate in the research community whether outbound patterns are useful 

or not. Moreover, there has been very limited research done on the development of modeling (or 

software development) languages that support this kind of patterns. To the best of our knowledge, 

WebML
7
 is the only language that has an explicit support for this pattern. We decided to support these 

patterns, because they can be quite useful in publish/subscribe scenarios in large enterprises. In such 

situations, a service requestor will retrieve published services and consequently select services to use in 

its own systems. Moreover, the service requestor will be able to send parts of its business logic to the 

service provider side, so that the service provider can execute those services under conditions defined 

by the service requestor (e.g., the change of the stock prices) and notify the service requestor (via output 

messages) about the result of the service execution. 

In the following subsections, we discuss in detail how we modeled each of the outbound patterns. 

4.1.2.1. Out-Only  

 

This pattern consists of exactly one message sent to some other node from a service. No fault 

may be generated. In Figure 134, we show the model of the Out-Only pattern in the standard BPMN 

and its mapped and refined version in rBPMN. This pattern is organized as follows. A service requester 

(e.g., EHR Locator) subscribes for a service (e.g., getInfo service of Police) sometime in the process 

before the message exchange of this pattern might happen. Along with its service subscription, the 

service requestor (e.g., EHR Locator) might have also sent its policies (rules) which define conditions 

under which the service (or message exchange) should be triggered. These conditions could be easily be 

updated or even extended by adding more derivation or production rules in a ruleset associated to the 

rule gateway (N.B., This will further be elaborated on in Section 4.4). The service provider (e.g., Police) 

received those rules and incorporated them in its business process, so that when those rules are fired, the 

service provider (e.g., Police) will inform the service requestor (e.g., EHR Locator) about requested 

information by sending the output message. This policy is represented with a rule gateway in the Police 

pool, under which the service should be executed (“getInfo”) and output message be sent 

(“getInfoRequest”). This can be defined through a production rule: If a patient is supervised, then get 

the electronic health record and notify the police. Then, the service requestor (EHR Locator) receives 

the message and based on its own business logic (e.g., defined by a rule gateway) defines what steps it 

needs to take (e.g., whether to perform the “Inform police” task or not). 

                                                   
7 http://www.webml.org 

http://www.webml.org/
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Figure 134. The model of the Out-Only pattern in rBPMN  

 In Figure 135, we show an example of the production rule that might be attached to the rule 

gateway on the service side (e.g., Police pool). This rules drives the decision on the service should it 

send the (output) message to the service requestor. This example also nicely explains a need for 

standard for rule interchange format (e.g., RIF). Our solution (rBPMN) is based on the integration of the 

rule interchange language (R2ML) and a process modeling language (BPMN). As such, it nicely 

demonstrates how those two standardization efforts can effectively be synergized.  

 

Figure 135. The production rule associated to the rule gateway (service side) from the rBPMN model of 

the Out-Only pattern shown in Figure 134 

4.1.2.2. Robust Out-Only  

 

This pattern can be considered a variation of the Out-Only pattern. It also consists of exactly one 

message sent to some other node from a service. The difference in this case is that faults can be 
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triggered by the message as specified in the "Message Triggers Fault" model [137] and be sent to the 

initiator of the interaction.  

In Figure 136, we the model of the Robust Out-Only pattern represented first in the standard 

BPMN and then in rBPMN. The Fault message handling is the same as for the Robust In-Only pattern, 

by using the subprocess called that Exception handler that we introduced to return the fault message to 

the sender of the initial message. In this case, the “getInfo” task sends a message to the service 

requestor (e.g., EHRLocator). The service requestor decides whether to return a fault message to the 

service or not based on its internal logic. This internal logic can be defined as through a rule gateway, 

which might be associated with a reaction rule. In the rBPMN model from Figure 136, we also show 

how the rule gateway can be used to distinguish between different types of faults those that are result of 

internal service execution errors and those that are generated when the condition of the rule gateway 

evaluates to false. Here, we should also mention that for both rule gateways used in model from Figure 

136, we could associate different rules. We can associate production rules to the rule gateway on the 

service side, similarly as we showed for the Out-Only pattern.  The rule gateway on the service side 

might be associated with a pair of reaction rules similar to those from Figure 132. 

 

Figure 136. The model of the Robust Out-Only pattern in rBPMN 

4.1.2.3. Out-In  

 

This pattern consists of exactly two messages: a message sent to some other node from a service 

(i.e., output message), followed by a message received by the service from the other node (i.e., input 

message). The second message may be replaced by a fault as specified in the "Fault Replace Message" 

model [137]. In Figure 137, we show the Out-In WSDL pattern first modeled in the standard BPMN 

and then in rBPMN by using the notion of rule gateways. Here, the rule gateway is used to define a 

condition under which the service should be executed (e.g., the “getInfo” task) and output message be 

sent (e.g., “getInfoRequest”). The service requestor (HIS) receives the output message, which triggers 

its reaction rule associated with the rule gateway. Should the rule condition is satisfied, the business 
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logic of the service requestor is performed (e.g., “Request Patient Info” task) and the input message 

(“getInfoResponse”) is forwarded to the service.  

 

Figure 137. Representation of the Out-In MEP in the BPMN by using RR 

As this pattern could return a fault message, we can support this through the rBPMN model given in 

Figure 138. This is similar to the In-Out pattern shown Figure 131, but now the fault message is sent 

from the service requestor to the service as per the standard definition of the Out-In pattern and the 

associated "Fault Replace Message" model [137]. Again, we used the Exception handler subprocess 

(but now on the service requestor side) to return the fault message to the initial message sender (the 

service). This exception may be generated by the rule gateway, depending on the evaluated value of its 

condition, which is actually used to decide should the “Inform police” task be invoked or not, or during 

the execution of this task. Similar types of rules can be associated to the rule gateways as we indicated 

for the Robust Out-Only. The only difference from the Out-Only pattern is the reaction rule that is fired 

when the condition is evaluated to true (e.g., Info Police task in our example from Figure 138). In the 

Out-In case, the triggered action/event part of the reaction rule is a sequence of the task executing and 

input message (e.g., “getInfoResponse”), while Out-Only does not have the input message.  
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Figure 138. Model of the Out-In (with fault) pattern in rBPMN  

4.1.2.4. Out-Optional-In  

 

This pattern consists of one or two messages: a message sent to some other node from a service, 

optionally followed by a message received by the service from the other node. Each message may 

trigger a fault in response as specified in the "Message Triggers Faults" model [137]. We model this 

pattern (with fault handling) in rBPMN as shown in Figure 139. 
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Figure 139. Model of the Out-Optional-In pattern in rBPMN 

This pattern is similar to the In-Optional-Out pattern, but it has the opposite direction. In Figure 

139, we can see that the service requestor could whether to return an input message or not after 

completing its internal logic (modeled with the “Inform police” task in Figure 139). Yet, given that this 

pattern is associated with the "Message Triggers Faults" model, the rule gateway on the service 

requestor side can decide generate a fault message and send it to the service via the Exception handler. 

Additionally, the fault message can be also sent to the service if an error occurs during execution of the 

“Inform police” task. Finally, we should mention that we could associate rule to the all rule gateways 

shown in Figure 139 by following the similar rule association principles described in the previous 

pattern (Out-In with fault). The only difference is the data gateway added after the “Inform Police” task 

in Figure 139. This way, the decision whether a message should be returned or not, is based on the data 

changed during the “Inform Police” task execution. This data gateway might be replaced with a rule 

gateway, which might have an associated rule or set of rules (similar to the In-Optional-Out pattern).   
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4.2. Interaction modeling in rBPMN 
 

The workflow patterns (see Section 4.3) describe a control flow of a business process. A control 

flow is a perspective that characterizes process orchestrations. However, there are several differences 

between process orchestrations and process choreographies that need specific consideration: 

choreographies are based on message exchange, and potentially many participants interact in a 

choreography, while orchestrations are based on a control flow between the activities of a single process 

performed by a single organization.  

Service interaction patterns (SIP) aim at describing a set of small granular types of interactions that 

can be combined in choreographies [1], and they are independent of concrete languages or 

implementations. Similar to workflow patterns (see Section 4.3), service interaction patterns cannot be 

modeled with the standard BPMN, as BPMN lacks some important concepts for representing 

choreographies [22], so we proposed those extensions in rBPMN in order to represent choreographies 

as shown in Section 3.1.4. Through the service interaction patterns represented in subsequent section, 

we will show implications of rBPMN extensions for modeling choreographies.  

There are two approaches to modeling of choreographies: interaction models and interconnected 

interface behavior models (interconnection models) [22]. Interaction models are built up of basic 

interactions (message exchanges), while interconnected interface behavior models defines control flow 

of the each participant in interaction (choreography). The representatives for the interaction model 

approach are WS-CDL [55], Let‟s Dance [150] and iBPMN [25]. Interconnected interface behavior 

models can be represented in BPMN [ref] and BPEL4Chor [ref]. As BPMN can be used for both 

modeling approaches, we here show basic interaction patterns expressed in rBPMN as both interaction 

and interconnected interface behavior models. 

We should note that interaction models do not suffer from two drawbacks of interconnected 

behavioral interface models: redundancy (parallelism, branching and loops are duplicated in the model, 

as each collaborating party needs to represent business flow from their own perspective) and potentially 

incompatible behavior (potential deadlocks because of sequencing structures, which do not mach 

properly) [22]. However, it is has been reported that interaction models suffer from their anomalies too, 

such as locally unenforceable choreographies [22].  

Authors in [1] recognized 13 service interaction patterns, which are divided in to four groups, 

following the three main characteristics: i) number of parties involved (i.e., bilateral and multilateral 

interactions); ii) maximum number of messages exchanged in an interaction (i.e., single or multi-

transmission interactions) and iii) in the case of two-way interactions, whether the receiver of the 

response is in the same time as the sender of request (round-trip and routed interactions). We will 

present these patterns as described in [6].  

 

4.2.1. Single-transmission Bilateral Interaction Patterns 
 

There are three patterns in this group. This group of patterns include basic send/receive patterns 

where one participant send a message and wait for a response. 

4.2.1.1. Send 

 

The send pattern represents a one-way interaction between two participants seen from the 

perspective of the sender. There are different flavors of this pattern, considering, for instance, the 

scenario when the sender selects the receiver, that is, the receiver is known either at design time of the 

choreography or only during the execution of a conversation. 

Figure 140 illustrates an example where one participant (represented by a BPMN Pool 1) is 

sending a message to another participant (Pool 2). This is represented as an interconnected behavioral 

interface, which is a view of individual partners onto the choreography. We represented partners in 
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message exchanges as BPMN pools. The sending of the message is done by the Send task in Pool 1, 

after rule gateways‟ R1 condition evaluates to true, while the receiving of this message is done by using 

receiving message event in Pool 2, which receives the message. After receiving the message the 

sequence flow goes to the rule gateway R2 that continues sequence flow if the reaction rule‟s condition 

(Condition1) evaluates to true. We employ production rule, which is attached to the rule gateway R1 on 

the service side (e.g., Pool 1). This rule drives the decision on the service should it send the (output) 

message to the service requestor. 

This pattern can be described in plain BPMN, however by using rules we gain important 

advantages, such as that a service requester (Pool 2) could subscribe to a service (e.g., Send task of Pool 

1) sometime in the process before the message exchange of this pattern might happen. Along with its 

service subscription, the service requestor (e.g., Pool 2) might have also sent its policies (rules) which 

define conditions under which the service (or message exchange) should be triggered. These conditions 

could be easily being updated or even extended by adding more derivation or production rules in a 

ruleset associated to the rule gateway. The service provider (e.g., Pool 1) received those rules and 

incorporated them in its business process, so that when those rules are fired, the service provider (e.g., 

Pool 1) will inform the service requestor (e.g., Pool 2) about requested information by sending the 

output message. 

 

 
Figure 140. The “Send” pattern 

In Figure 141, we show the interaction model for the “Send” pattern where only relevant interactions 

and dependencies between nodes are shown. The interaction model includes only pools and message 

flows between pools, as well as the gateways. The interaction model shown in Figure 141 is attained as 

a refinement of the model shown in Figure 140 in a following way: for every message flow, send and 

receive events are introduced. In this model, we show the message flow between Pool 1 and Pool 2, 

annotated with the start message event. This event represents a message send from Pool 1 to Pool 2. 

After sending this message, the sequence flow goes to the rule gateway R2 that decides based on its 

condition whether the sequence flow will continue or not. The rule gateway is associated to one node in 

the scenario. It this case,  the association defines who actually carries out the choice. In the case of the 

model from Figure 141 that is Pool 2. We should note that rule gateway R1 is not shown in this 

interaction model, as we consider it as a part of Pools‟ 1 internal logic. 
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Figure 141. The “Send“ pattern (interaction model) 

This rBPMN model of the Send service interaction pattern can directly mapped into the Web Service 

Out-Only and Robust Out-only message exchange patterns (MEP), because receiving participant can 

return a fault message, as we have shown in Section 4.1.1.1. 

4.2.1.2. Receive 

 

The receive pattern also describes a one-way interaction between two participants, but this time 

seen from the perspective of the receiver. In terms of the message buffering behavior of the receiver, 

two cases can be distinguished. Messages that are not expected are either discarded or stored until a 

later point in time, when they can be consumed. 

 
Figure 142. The “Receive” pattern 

We show an interconnected behavioral interface model of the receive pattern in Figure 142. The 

receipt of the message is represented by receiving a start message and a rule gateway. If a reaction rule 

attached to the rule gateway evaluates to true sequence flow is continued. This establishes an explicit 

tractability between the rule gateway and the rule‟s full definition represented in R2ML. This enables to 
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further define the rule with (post-)conditions and connect the service definition with the vocabulary 

elements. 

A corresponding interaction model for the receive pattern is shown in Figure 143. The mapping 

is similar to one described for the “Send” pattern (see Section 4.2.1.1). 

 
Figure 143. The “Receive“ pattern (interaction model) 

This pattern is supported in WSDL with two MEPs: In-Only and Robust In-Only, as shown in 

Section 4.1.1. Due to its stateless nature, WSDL cannot define under which conditions the message 

should be accepted or discarded, so for defining such precondition we propose the usage of the rBPMN 

rule gateway. For example, if a message arrives earlier than that message can be accepted. 

In this pattern, we used a reaction rule attached to rule gateway because reaction rule has an 

event for its input, so when a message event happens it fires the reaction rule. In this case, a production 

rule cannot be used, as production rules are not triggered on an event, but rather on a true condition. The 

use of reaction rules is convenient because we can model an input message and output service activity. 

By using the rule gateway in this pattern, we add additional elements of the business logic, which can 

be used to define a condition under which the modeled service (task) can be used, once the input 

message has been received. Most importantly, this condition can be updated both at run- and design-

time. For example, this condition can define from which partner service our modeled service can 

process requests. 

4.2.1.3. Send/Receive 

 

In the send/receive pattern, a participant sends a request to another participant who then returns a 

response message. Both messages belong to the same conversation. Since there could be several 

send/receive interaction instances happening in parallel, corresponding requests and responses need to 

be correlated. This pattern represented in rBPMN is shown in Figure 144. The message is send from 

Pool 1 to Pool 2, where this message is received with a message event, followed by a reaction rule 

attached to the rule gateway. Based on the condition defined on this rule, the Send task is invoked and 

the message is returned to Pool 1. By employing a reaction rule attached to the rule gateway here, we 

could precisely define a condition on which a message could be returned from the Pool 2. We used 

reaction rule, because we have an event for its input and a task for its triggered action. 
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Figure 144. The “Send/Receive” pattern 

The “Send/Receive” pattern from Figure 144 represented as an interaction model in rBPMN is shown in 

Figure 145. We followed the same principle of mapping as for the “Send” and “Receive” patterns, 

where message flows are annotated with message events and a rule gateway is associated with a pool 

that is responsible for its execution (i.e., Pool 2 in Figure 145). 

 

 
Figure 145. The “Send/Receive” pattern (interaction model) 

This pattern has two corresponding WSDL MEPs, Out-In and Out-Optional-In as shown in 

Section 4.1.2. As both interactions in this pattern may result in a fault message in response, the same 

exception handling process can be used as described for Out-Optional-In MEP (see Section 4.1.2.4). 

 

4.2.2. Single-Transmission Multilateral Interaction Patterns 
 

In this group, authors of [6] identified four patterns that deal with multilateral interactions. In this 

group of patterns, one participant may send or receive multiple messages where these messages are part 

of different interactions threads that belongs to different participants (i.e., one to many and many to one 

interactions). 
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4.2.2.1. Racing Incoming Messages 

 

The racing incoming messages pattern is described as follows: a participant is waiting for a message 

to arrive, but other participants have a chance to send a message. These messages by different 

participants “race” with each other. Only the first message arriving will be processed. The type of the 

message sent or the category, to which the sending participant belongs, can be used to determine how 

the receiver processes the message. The remaining messages may be discarded or kept for later 

consumption. We model this aspect of message racing in this pattern by using an event-based XOR 

gateway and a rule gateway as shown in Figure 146. The figure contains the interconnected behavioral 

interface model of the pattern. In this case we use multiple tasks from a Pool 1 to send multiple 

messages, but also, multiple pools that would send a message could be also used. 

 
Figure 146. The “Racing incoming messages” pattern 

Figure 146 shows a scenario where Pool 2 has done some activities and now waits for the Pool 1 

message. If the Send 1 task sends the message, the intermediate message event in Pool 2 receives the 

message and then the reaction rule attached to the rule gateway is fired and continues a sequence flow if 

its condition is satisfied. At the same time, when this happens, the reaction rule attached to the rule 

gateway updates the Entity‟s predicate used for its condition, so that any other message that arrives after 

this first message will not be consumed anymore. When this happens,  if now the Send 2 task sends the 

message, the rule gateway will hold execution of this sequence flow, that is, no further message from 

the racing participants. This is the case where a reaction rule attached to the rule gateway can be used in 

this pattern. We used reaction rule as we have event for an input, and also a produced action (Entitys‟ 

update), which could be modeled by a reaction rule. Without the rule gateway, it would be hard to 

implement this pattern in plain BPMN, because it is not possible to define such an (runtime-updatable) 

condition on a rule. 

The “Racing incoming messages” pattern represented as an interaction model in rBPMN is 

shown in Figure 147. In this interaction model, we have shown just interactions between the partners 

(pools) involved in this scenario. Every message event represented as interaction is attached to a 

message flow. Rule gateway is connected to Pool 2 with dashed line, who carries out the choice. The 

decision logic is the same as in Figure 146. In interaction model (see Figure 147) in difference to 

corresponding interconnection model (see Figure 146) we can only see interactions between 
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participants, but not their internal logic, which is an important aspect in modeling service 

choreographies. 

 
Figure 147. The “Racing incoming messages“ pattern (interaction model) 

4.2.2.2. One to Many Send 

 

A participant sends out several messages to other participants in parallel. It might be the case 

that the list of recipients is already known at design-time of the choreography or, alternatively, the 

selection of the recipients takes place in the course of the conversation (i.e., at run-time). 

 In Figure 148, we give an rBPMN (interconnected behavioral interface) model of this pattern by 

using a multiple instances task (“Send 1”) that sends messages to each participant contained in the 

participant set (of type Pool 2). Participant set represents a set of participants of the same type, used in 

the same conversation. We represent participant set by an rBPMN artifact with <ref> name. We assume 

that all referenced participants are of the same type. The introduction of the participant set, which is 

used to determine to whom the message is sent, is needed as regular BPMN cannot capture it. This 

pattern is similar to the Send pattern, but in this case one participant in conversation is sending 

messages to multiple participants. When Pool 2 receives the message, it fires a rule gateway (with an 

associated reaction rule), which evaluates if the sequence flow should be continued based on the rule 

gateway‟s condition and potentially invoke some task or not. The multiplicity of the Pool 2 is denoted 

with a small parallel indicator (|||) displayed at the bottom-center of the pool. This means that we can 

have multiple instances of a Pool 2. References to those instances are contained in a participant set. 
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Figure 148. The “One-to-Many Send” pattern 

The “One-to-Many Send” pattern represented as an interaction model in rBPMN is shown in 

Figure 149. In this model, we have a message being sent through a multiple instance subprocess (i.e., 

Send) that is mapped from the multiple instance sending task used in the interconnected behavioral 

interface model given in Figure 148. The send message event is generated for each participant contained 

in participant set, attached to this message event. When the receiving side (Pool 2) receives the 

message, it uses the rule gateway to decide whether the sequence flow should continue or not. Of 

course, here, in the case of the else branch on the rule gateway, we can have a decision on what direct 

the sequence follow will take.   

 

 
Figure 149. The “One-to-Many Send“ pattern (interaction model) 
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4.2.2.3. One from Many Receive 

 

In the one-from-many receive pattern, messages can be received from many participants. In 

particular, one participant waits for messages to arrive from other participants, and each of these 

participants can send exactly one message. Typically, the receiver does not know the number of 

messages that will arrive, and stops waiting as soon as a certain number of messages have arrived or a 

time-out has occurred. An rBPMN interconnected behavioral interface model of this pattern is shown in 

Figure 150. The references to the senders are collected in a participant set created in Pool 2. An 

important aspect of this pattern is a notion of stop condition [6], which denotes a completion of the 

interaction. This condition could be expressed by a predicate over the messages received. Thus, we use 

a reaction rule attached to the rule gateway to define this condition. When a message arrives from the 

sender, the reference to the sender is stored in the participant set, and then the reaction rule attached to 

the rule gateway (R1) is evaluated to decide if the stop condition evaluates to true (in this case when 

participant set size is equal to some given size). In this case, the interaction is considered complete. 

Otherwise, the sequence flow is returned to the event-based gateway to wait for a next message. In this 

pattern, it is important that an interaction occurs in a given period of time, because this determines 

whether the interaction has been successful or not when timeout. This is called a success condition. For 

this condition, we introduced an intermediate timer event that fires when a timeout happens, and then 

the reaction rule attached to the rule gateway (R2) is invoked to decide if a message interaction is 

successful or failed, based on messages received. In the interaction was not successful, the reaction rule 

attached to the rule gateway R2 evaluates to true, and the triggering of this rule gateway R2will generate 

an exception. If reaction rule attached to the rule gateway R2 evaluates to false, and sequence flow is 

returned to the wait for a next message. Without the rule gateways, it would be hard to define these 

conditions in plain BPMN, and impossible to change them in runtime. Rules enable to dynamically 

change the process conditions (and flows) by using a rule gateway, because of declaratively nature of 

rules.  

 
Figure 150. The “One from Many Receive” pattern 
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The “One-from-Many Receive” pattern represented as an interaction model in rBPMN is shown 

in Figure 151. In this model, we introduced repeating subprocess that contains an intermediate message 

event, which receives the message from the participant (Pool 1). When the message is received, the 

reference to the participant who has sent the message is stored in the participant set, and the sequence 

flow continues to the rule gateway (R1). The rule gateway then decides based on the predefined 

condition (participantSet.size = wantedSize) whether this interaction should be completed or not (stop 

condition). When a timeout occurs, the repeating subprocess ends, and then the outside rule gateway 

(R2) based on its condition decide whether sequence flow is going to return to this subprocess again for 

new set of interactions or to raise an exception (success condition). In interaction model, we shown all 

interactions and process control logic between the participants (pools), which enables to hide internal 

participant logic. 

 
Figure 151. The „One-from-Many Receive“ pattern (interaction model) 

4.2.2.4. One to Many Send/Receive 

 

In this pattern, a participant sends out several requests to other different participants and waits 

for their responses. Typically, not all responses need to be waited for. The requester rather waits for a 

certain amount of time or stops waiting as soon as enough responses have arrived (e.g., given number of 

messages). An rBPMN interconnected behavioral interface model of this pattern is shown in Figure 

152. The correlation between send/receive messages is done by pointing to the participants that should 

be included from the associated participant set. In Figure 152, we can see that a multiple-instance 

subprocess with the “Send” task is used to send messages to the other partners (Pool 2), by using 

information about partners from the participant set (<par>). The reason for such a design decision is 

because a number of partners may or may not be known at design time. When such a message gets to 

the partner (Pool 2), this partner uses its own logics represented with rule gateway (R2) to decide 

whether it should return a message to the sender or not by invoking its own “Send” task. When a 
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response from a partner (Pool 2) is received, the reference to the partner who has sent the message is 

stored in the participant set (<par1>), and a reaction rule attached to the rule gateway (R1) is invoked to 

evaluate if the requested number of messages is received (i.e.,. this is the stop condition). It is possible 

that no response is received. During this process a timeout can occur (supported by an intermediate 

message event on the subprocess edge), and in this case, we use another reaction rule attached to the 

rule gateway (R3) to decide if the success condition is achieved or not. If not, an end exception event 

happens. If yes, the sequence flow goes to the start to wait for new set of interactions.  

 
Figure 152. The “One to Many Send/Receive” pattern 

The “One-to-Many Send/Receive” pattern represented as an interaction model in rBPMN is 

shown in Figure 153. In this model, we introduced a repeating Subprocess in which we have Send and 

Receive message flows annotated with message events. Messages send and received by those message 

flows, are send and received by participants referenced by the participant set (<par>). After the “Send” 

message from Pool 1 to Pool 2, a reaction rule attached to the rule gateway (R2) is used to decide 

whether the response from Pool 2 should be received. When the message is received from Pool 2, 

another reaction rule attached to the rule gateway (R1) is used to evaluate whether the stop condition is 

satisfied (i.e., wanted number of messages is received), and if so the interaction completes. During this 

conversion, a timeout may occur (by using an intermediate timer event on the Subprocess edge) and 

then the third rule gateway (R3) is used to evaluate whether the success condition is achieved, and in 

that case exception occurs. If not, sequence flow is returned to the start to wait for a new set of 

interactions. 
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Figure 153. The “One to Many Send/Receive” pattern (interaction model) 

4.2.3. Multi-transmission interaction patterns 
 

The multi-transmission interaction patterns are the patterns where one participant sends (receives) 

more than one message to (from) the same logical participant. In this group, there are three patterns as 

described in the following three subsections.  

4.2.3.1. Multi-responses 

 

In the multiple responses pattern, a participant sends a request to another participant who sends back 

multiple messages. An important question in this scenario is how the requester knows that there are no 

more messages to be expected. One option would be that the messages contain information about 

whether there will be more messages or not. Another option could be that the last message is of a 

special type. Finally, also a time-out or a rule condition could be used to stop waiting for further 

messages. This scenario is shown in Figure 154. The participant (Pool 1) sends a request to the other 

participant (Pool 2) in the process, and subsequently Pool 1 receives a number of messages from Pool 2. 

Pool 2 uses its own logic and loop interactions to determine whether it should send the messages to Pool 

1. This logic of Pool 2 can be represented by using a reaction rule attached to the rule gateway such as 

rule gateway R2 in Figure 154. Pool 1 receives messages from Pool 2 and then Pool 1‟s sequence flow 

goes to the “Task”, which is preformed, and then to a reaction rule attached to the rule gateway (R1) to 

evaluate the stop condition for this process. If a reaction rule attached to the rule gateway R1 evaluates 

to true, the process ends and the rule gateway updates the Entity‟s predicate in order to stop the process 

if Pool 2 continues to send the messages after the stop condition. If the reaction rule attached to the rule 

gateway R1 evaluates to false, the sequence flow goes to the event-based gateway to wait for another 

event. Besides the stop condition, a timeout can occur and this is represented with intermediate timer 

event in Pool 1. In addition, Pool 2 can determine based on its own logic when the multi-transmission 

should stop, and then Pool 2 returns the end message to Pool 1. This means that the stop condition is 
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implemented on the Pool 2 side. In that case, Pool 1 receives the message and the sequence flow goes to 

the end message event, as for two other cases (timeout and rule-based stop condition). Then the end 

message event from the Pool 1 sends the message to the sending task in Pool 2 to inform it that no 

further messages will be sent any more.  

In plain BPMN, it is hard to precisely define abovementioned condition on both participant sides. 

This means that those conditions are not usually represented in BPMN, and so this pattern cannot be 

fully supported in BPMN. 

 

 
Figure 154. The “Multi-responses” pattern 

The “Multi-responses” pattern represented as an interaction model in rBPMN is shown in Figure 

155. In Figure 155, we show that the start message is sent from Pool 1 to Pool 2 and that after sending 

this message, Pool 1 expects a number of messages from Pool 2. When the message from Pool 2 has 

been received, the sequence flow goes from the message event to the rule gateway (it is actually rule 

gateway R1 from Figure 154), which uses a reaction rule attached to it to decide whether the stop 

condition is satisfied or not. If the stop condition is satisfied, the reaction rule attached to the rule 

gateway updates the Entity‟s predicate in order to stop any further received messages from Pool 2 and 

the sequence flow goes to the last message event in the process. If the reaction rule attached to the rule 

gateway evaluates the stop condition to false, the sequence flow goes to the event-based gateway to 

wait for another event. A timeout can occur also, and in that case, an intermediate timer event happens, 

which ends the process by connecting to the last message event. In addition, Pool 2 can send the stop 

message to Pool 1; this implements the stop condition on the Pool 2 side. The last message event is used 

to inform Pool 2 that it should not send messages any more. 

In the interaction model shown in Figure 155, we do not show rule gateway R1 from Figure 154, 

as we consider it as part of the internal logic of Pool 2. This is the main difference between those two 

models shown in Figure 154 and Figure 155. This implies that not all the process logic from the 
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interconnection interface model can be mapped completely into the interaction model. In case of this 

pattern, we find that a constraint in the interaction model shown in Figure 155 is that we cannot show  

the logic of Pool 2 and its sending of multiple messages to Pool 1, because we would need to have 

repeating subprocess for this message send, but in this case the pattern would not be correct, as we need 

to navigate to other events from event-based gateway in this patterns too, if they happen. 

 
Figure 155. The “Multi-responses” pattern (interaction model) 

4.2.3.2. Contingent requests 

 

In the contingent requests pattern, a participant sends a request to another participant. If this 

second participant does not respond within a given period of time, the request is sent to another (third) 

participant. Again, if no response comes back, a fourth participant is contacted, and so on. Delayed 

responses, that is, responses arriving after a time-out has occurred, might or might not be discarded. In 

scenario shown in Figure 156, the Pool 1 is sending the message to multiple instances of Pool 2, by 

using the “Send”, which selects participants to which a request will be sent. The participants (instances 

of Pool 2) are selected from the attached participant set (<par>). The messages are received by Pool 2, 

which uses its own logic represented by the reaction rule attached to the rule gateway R2 in order to 

decide whether to respond or not. Pool 1 waits for some amount of time for a message from Pool 2 and 

when such a message arrives in, Pool 1 invokes its “Task”, which is followed by a reaction rule attached 

rule gateway R1 to determine if this process will end or it will return to the event-based gateway to wait 

for new messages. If the message from Pool 2 is not received in a given amount of time, the 

intermediate timer event occurs and the sequence flow is returned back to the start (the “Send” task). If 

a late (time-outdated) response from some earlier participant came during the processing of the 

contingent request (by a Pool 2 participant in Figure 156), a reaction rule attached to the rule gateway 

R1 decides if such a response should be accepted or not.  

In this pattern, we used a reaction rule attached to rule gateway R1 to decide whether the next 

participant should be contacted or not. This is an important issue for this pattern, as this selection cannot 

be easily represented in plain BPMN.  
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Figure 156. The “Contingent requests” pattern 

The “Multi-responses” pattern represented as an interaction model in rBPMN is shown in Figure 

157. In this model, we have a message that is sent on the start of the process from Pool 1 to one of the 

participants of the Pool 2 type, by using a reference to that participant from the participant set (<par>). 

Then, response messages are expected from Pool 2 in a given amount of time. When the message 

arrives from Pool 2, the rule gateway is used to determine whether the process will end or it will be 

back to wait for another message.  

 In the interaction model shown in Figure 157, we have a similar constraint in showing the 

internal logic of Pools‟ 2, as in the previous pattern (Multi-responses). Therefore, because of this 

constraint, we can say that the interaction model cannot show a complete interaction logic as much as a 

behavior interconnected model can. However, this may not be a general rule, because one may not need 

to have any complex logic on the side of Pool 2. 
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Figure 157. The „Contingent requests“ pattern (interaction model) 

4.2.4. Routing patterns 
 

In this group of patterns, there are three patterns dedicated to routed interactions, which are 

described in the following subsections. 

4.2.4.1. Request with referral 

 

The request with referral pattern is especially important in service-oriented environments where 

a registry is in place that allows for service binding at run time. As well, simple types of dynamic 

behavior can be represented by this pattern, for instance, the transmission of a new collaboration partner 

during an interaction. 

In particular, the request with referral pattern can be used if a participant A sends a message to 

another participant B containing a reference to participant(s) C. Although B does not need to know all 

C‟s in advance, B can now interact with C‟s. This pattern describes the concept of link passing 

mobility
8
. In an rBPMN behavior interconnected model of this pattern, shown in Figure 158, the 

participant (pool) A uses the “Send 1” task to send a message to the pool B, which receives this 

message and initiates the Subprocess. In this Subprocess, based on the rule gateway (R1) condition, if 

the reaction rules‟ condition attached to this rule gateway evaluates to true, Pool B can send messages to 

C pool instances, by using the “Send 2” task. In the case when the rule gateways‟ reaction rule 

condition evaluates to false, the end exception event is reached, and the Exception Handler is invoked, 

which uses the end message task to send the fault message to Pool A. A fault message is also generated 

if an error occurs during the execution of the “Send 2” task. The “Send 2” (multi-instance) task is 

sending messages to C pool instances, by using references to these participants from the participant set 

sent from Pool A. Pool C receives the message, and if the rule gateways‟ (R2) attached reaction rule 

                                                   
8 Link passing mobility is a concept that includes passing references to some participants in interaction between those 

participants. 



Milan Milanović 

 

 

156 

 

condition is true, it responds to Pool A by using the “Send 3” task and a reference to Pool A from the 

participant set sent from Pool B. 

The reaction rules attached to rule gateways enabled us not only to more precisely decide whether to 

send the messages to related participants, but also to support exception handling. This wouldn‟t be 

possible in plain BPMN, and so this pattern can be only partially supported. 

 

 
Figure 158. The “Request with referral” pattern 

The “Request with referral” pattern represented as an interaction model in rBPMN is shown in Figure 

159. The “Send 1” task from the interconnected behavior model, shown in Figure 158, is translated to a 

message event, sent from Pool A to Pool B. When Pool B receives the message, it uses the reaction rule 

attached to the rule gateway (R1) to choose whether to send the message to Pool C instances, by using 

the “Send 2” subprocess, or to return a (fault) message to the Pool A, by using an exception event 

annotated message. The “Send 2” subprocess uses references to participants of Pool C, from the 

participant set sent from Pool A, to send messages to those participants. During the “Send 2” 

subprocess, an exception can occur. This exception is handled by the fault handler attached to the 
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border of the “Send 2” subprocess, which connects to the exception event annotated message sent from 

Pool B to Pool A. When Pool C receives the message from Pool B, it uses the reaction rule attached to 

the rule gateway R2 in a repeating subprocess, to decide whether it will respond to Pool A (by sending 

the message by using the “Send 3” message event), which is referenced from the participant set. 

 In interaction model shown in Figure 159 we completely supported interconnection model from 

Figure 158. 

 
Figure 159. The “Request with referral” pattern (interaction model) 

4.2.4.2. Relayed Request 

 

The relayed request pattern is common in emailing collaboration scenarios. In this scenario, a 

participant A sends a request to another participant B who forwards it to a third participant C who will 
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actually interact with A. However, B always gets copies of messages exchanged in order to be able to 

observe the conversation.  

An rBPMN behavior interconnected model of an example of this pattern is shown in Figure 160. In 

the pattern example, we use reference passing between participants A and B, and B and C. When Pool 

A sends a message to Pool B, by using the “Send 1” task, Pool B receives this message and sends 

multiple messages to Pool C instances, by using references to the participants from the participant set, 

which are sent from Pool A. When Pool C receives the message, it uses the reaction rule attached to the 

rule gateway (R1) to decide whether to send the same message to Pool A and Pool B, or to generate a 

fault. This fault is handled by the Exception handler, which sends the fault message to both Pools A and 

B. Pool A just receives the message by using the repeating Subprocess 3 with the message event and the 

“Receive” task, while Pool B uses a reaction rule attached to the rule gateway (R2) when it receives the 

message from Pool C, to decide whether the message should be received or not. This rule-based 

decision is important, as Pool B needs to have a mechanism to accept only those messages that are of its 

particular interest. 

In the standard BPMN, acceptance of particular messages would be hard to model. Additionaly, by 

using rules we enable that this decision can be dynamically changed in design-time or run-time. 

 
Figure 160. The “Relayed request” pattern 

The “Relayed request” pattern represented as an interaction model in rBPMN is shown in Figure 161. 

After sending the message from Pool A to Pool B (by using the “Send 1” message event annotated 
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flow), Pool B sends messages to the instances of Pool C by using the multi-instance subprocess. The C 

participants are referenced from the participant set sent from Pool A. After sending the message from 

Pool B to Pool C, the reaction rule attached to the rule gateway (R1) is used to decide whether the 

standard or fault messages should be sent from Pool C to both Pools A and B. We have not shown the 

R2 rule gateway as we consider it as a part of the Pools‟ B internal implementation logic, as in Multi-

responses and Contingent requests patterns. This is the case, as Pool 2 should internally decide whether 

to receive message or not. Here we can see that interaction model cannot completely represent logic 

from a corresponding interconnection model. 

 
Figure 161. The “Relayed request” pattern (interaction model) 
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4.2.4.3. Dynamic Routing 

 

This pattern is defined as follows [6]: “request is required to be routed to several parties based on a 

routing condition. The routing order is flexible and more than one party can be activated to receive a 

request.” This routing can be subject to dynamic conditions, which are based on data contained in the 

original request or obtained during the conversation. An rBPMN behavior interconnected model of this 

pattern is shown in Figure 162. In this pattern, Pool 1 sends a message (by using the “Send 1” task) to 

Pool 2, which then uses the “Send 2” task and the reference to the Pool 4 participant from the 

participant set to send the message to Pool 4. When Pool 4 receives the message, based on the routing 

condition defined by a reaction rule attached to the rule gateway (R), it sends the message to Pool 1 (by 

using the “Send 3” task) or to Pool 2 (by using the “Send 6” task). In the first case (when the reaction 

rules‟ condition is satisfied), Pool 1 can receive the message, process it by using the “Send 4” task and 

return it to Pool 2. Then, Pool 2 uses the reference to Pool 4 and the “Send 5” task to return the message 

to Pool 4. Pool 4 uses the “Receive” task to receive the message. In the second case (when the reaction 

rules‟ condition is not satisfied), Pool 4 uses the “Send 6” task and the reference to the Pool 3 

participant to send the message to this participant. When Pool 3 receives the message, it forwards it to 

Pool 1 by using the “Send 7” task and the reference to Pool 1 from the participant set. 

We have partially supported this pattern, as it define that a participant can insert new or delete 

existing interactions in choreography at runtime. This is not possible, as BPMN semantics would be 

broken in that case, because message flows cannot be dynamically added or removed from a 

choreography. In this pattern, without usage of rules, it would be hard to support routing condition. 
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Figure 162. The “Dynamic routing” pattern 

The “Dynamic routing” pattern represented as an interaction model in rBPMN is shown in Figure 163. 

Pool 1 is using the “Send 1” message event to send the message to Pool 2, and then Pool 2 sends the 

message to Pool 4 by using the “Send 2” message event and the reference to Pool 4 from the participant 

set. When Pool 4 receives the message, it uses the rule gateway to evaluate the routing condition. The 

routing condition is used to decide whether the reaction rule attached to the rule gateway will use the 

“Send 3” message event to send the message to Pool 1, or the “Send 6” message event to send the 

message to Pool 3. When the message is sent to Pool 1, Pool 1 uses the “Send 4” task to return the 

message to Pool 2. After sending this message, Pool 2 uses the “Send 5” message event and the 

reference to Pool 4, to send the message to Pool 4. When the reaction rule attached to the rule gateway 

evaluate its condition to false, the “Send 6” message event and a reference to Pool 3 from the 

participant set is used to send the message from Pools 4 and 3. Then, Pool 3 sends the message to Pool 

1 by using the “Send 7” message event and a reference to the Pool 1 from the participant set. 

 In interaction model shown in Figure 163 we mapped completely corresponding interconnection 

model from Figure 162. 
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Figure 163. The “Dynamic routing” pattern (interaction model) 

4.2.5. Mappings between rBPMN interconnection and interaction 
models 

 

In this subsection, we present how rBPMN interconnected behavioral interface models 

(orchestration) can be generated from rBPMN interaction models (choreographies). This is an imporant 

issue, as we want to enable generation of multiple interconnection models from one interaction model. 

With this solution, we can assign adequate process logics to each involved participant in a process, from 

one global interaction model. 

Our approach is based on work on deriving interface behavior models from iBPMN 

choreographies [22] by using Petri nets as intermediary and applying to it model reduction algorithm 

[150]. This algorithm removes these interactions from the model, in which the corresponding 

participant is not involved. In this section, we propose a mapping of rBPMN interconection models 

from rBPMN interaction models, based on work presented in [22] and our research presented in 

previous section (service interaction patterns). 

The first four mappings are based on solution proposed in [22]. In Figure 164, we show the start 

event message mapping. In Figure 164a, we show an interaction model where pool A sends a message 

(annotated with a start message event) to pool B. In Figure 164b, we have the same model as an 
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interconnection model, where the start message event is sent from pool A is mapped into a sending task 

in pool A. This mapping is realized in this way, because sending a message from one pool to another 

can be realized by using a task inside a pool. After the start message event in Figure 164a, the sequence 

flow is continued and this is denoted with m, which represents any other element in a sequence flow. 

This interaction is shown in multiple Service Interaction Patterns such as Send, Receive, and Multi 

Responses. 

 

 
Figure 164. The “Start event message” mapping 

The Intermediate event message mapping shown in Figure 165 is very similar to the Start event 

message mapping, but in this case, the message event have an incoming sequence flow (denoted with 

m) as well as an outgoing sequence flow (denoted with n) [22]. Based on the previous mapping, we 

mapped these two sequence flows as incoming and outogoing sequence flows of the sending task in 

pool A of Figure 165b. This interaction is shown in different Service Interaction Patterns such as 

Send/Recieve, and Racing Incoming Messages. 

 
Figure 165. The “Intermediate event message” mapping 

The next mapping is shown in Figure 166. Here, we show the “Parallel split” mapping, where in the 

interaction model (Figure 166a), a gateway is connected to pool A. This means that pool A carries out 

the choice. This mapping is shown in Figure 166b where the gateway is located in pool A, because if A 

carries out the choice, then it is the corresponding participant. The “Parallel split” mapping is present in 

all the Service Interaction Patterns, where the rule gateway is used as shown in Section 4.2. 
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Figure 166. The “Parallel split” mapping 

Similar to the previous mapping, by following the mappings presented in [22], in Figure 167, we define 

the “Synchronization” mapping. In the interaction model of this pattern (Figure 167a), an intermediate 

message event is attached to the message which is sent from pool A to pool B. The sequence flow 

which continues to the gateway, is denoted with n or o (Figure 167b). The gateway will be located in 

pool A, because it is connected with pool A (Figure 167a). The interconnection model shown in Figure 

167a is mapped into a Send task, which sends the message and which is connected with the gateway 

(Figure 167b). This mapping is based on the “Intermediate event message” mapping. This interaction is 

used in different Service Interaction Patterns such as Racing Incoming Messages. 

 
Figure 167. The “Synchronization” maping 

In Figure 168, we show the “Multiple Instances Task” mapping. Figure 168a shows an interaction 

model in which pool A sends a message to multiple instances of pool B. The Message event, which 

sends the message from pool A to pool B, is located in the multiple instance send subactivity (Figure 

168a). This pattern is mapped into the interconnection model, by using the multiple instances Send task, 

which sends the message to the multiple instances of pool B (Figure 168b). Multi-instance pool B is 

denoted by a small parallel indicator (|||) displayed at the bottom-center of the pool. This mapping is 

present in different Service Interaction Patterns, such as in the One to Many Send pattern. 
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Figure 168. The “Multiple Instances Task” mapping 

The following two patterns are related to the participant sets. In Figure 169a, we show the modified 

“Start event message” mapping, where the participant (multi-instance pool B) to whom the message 

should be sent is taken from a corresponding Participant set, which the message flow points to. This 

interaction is mapped to the Send task in Figure 169b, following the Start event message mapping, 

where the Participant set points to this sending task. This mapping exists in multiple Service Interaction 

Patterns, such as the Send/Receive and One to Many Send patterns. 

 
Figure 169. The “Participant set sends message” mapping 

In Figure 170, we show the “Participant set receives message” mapping where in the interaction model 

(Figure 170a), the participant information is passed through a message sent from pool A to pool B. This 

is mapped to the corresponding interconnection model in Figure 170b, where the participant 

information is received from a message received in pool B, and this information is passed to the 

Receive task, which uses this information for further actions. This mapping exists in different Service 

Interaction Patterns, such as Relayed Request and Dynamic Routing. 
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Figure 170. The “Participant set receives message” mapping 

4.3. Modeling control flow in rBPMN 
 

The control flow patterns represent a set of 21 workflow patterns created to show expressivity of 

workflow management systems [116]. These patterns can be used in business process modeling, and to 

compare the expressiveness of business process languages. The basic control flow patterns include 

sequence, and split, and join, as well as exclusive or split and exclusive or join. Control flow patterns 

are defined at the process model level.  

As these patterns can be presented in the standard BPMN without using rules, by adding rules we 

enrich the BPMN models in a way that such business processes can be more precisely described in a 

declarative way and changed in a design-time or in a real-time by changing only rules without a need to 

redesign the whole process. By employing rules in a process allows us to dynamically change the 

control flow of a process. We also use these patterns to evaluate where in a workflow process our rules 

can be used. As BPMN [88] has a weak support for rule-based gateways, where conditions are usually 

written in a natural language [108], by adding formal rules, we enable execution of such processes 

possible on some execution platform, such as BPEL [49].  

We should note that these patterns apply to business models that are used to model process 

orchestrations, because activities used in these patterns are performed within a single organization (i.e., 

BPMN Pool). Regarding mappings from rBPMN to execution languages, such as BPEL, these business 

models can be mapped into BPEL and WSDL constructs by using already defined mappings [88] [147], 

where rules are can mapped by using standard BPEL constructs (such as invoke) or into the executable 

rules that extend BPEL. 

The control flow patterns represent a set of 21 workflow patterns created to show expressivity o f 

workflow management systems [116]. The patterns in this section came from the research done in a 

Workflow Patterns Initiative
9
. Authors [116] recognized patterns organized in the following groups: 

basic control flow patterns, advanced branching and synchronization patterns, structural patterns, 

multiple instance patterns, state-based patterns and cancellation patterns. We follow this organization 

and order of the patterns in the rest of the section.  

 

4.3.1. Basic Control Flow Patterns 
 

The patterns in this group include elementary aspects of process control. 

 

 

                                                   
9 See http://www.workflowpatterns.com for more details. 

http://www.workflowpatterns.com/
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4.3.1.1. The “Sequence” Pattern 

 

The pattern “Sequence” is represented in Figure 171. An activity of the type activity2 is started 

after the completion of an activity of the type activity1. This pattern represents an ability to show a 

sequence of activities. We used the reaction rule attached to the rule gateway in this pattern to define a 

condition under which the sequence flow will continue from activity1 to activity2, or the sequence flow 

will stop. In the standard BPMN, this pattern is modeled without the rule gateway. This rule gateway, 

however, enables us to define more precisely the condition under which the sequence of activities 

continues. In addition, the reaction rule condition can be updated both at run- and design-time of the 

workflow. 

 
Figure 171. The “Sequence” pattern 

To ensure that a rule connected to the rule gateway in this pattern is a reaction rule, and that it have 

activity1 for its triggeredEventExpr and activity2 for triggeringEventExpr, we define the following 

OCL constraints to enforce this relation between the elements of the metamodel. In fact, this constraint 

has been defined on the corresponding rBPMN metamodel elements (as described in Section 3.2): 

 
[1] The rule gateway is connected to the reaction rule 

 

context RuleGateway 

inv: rule->exists(e | e.oclIsKindOf(ReactionRule)) 

 

[2] The reaction rule attached to the rule gateway needs to have the same task for 

its triggeredEventExpr, as the rule gateway‟s outgoing task, and the same task for 

its triggeringEventExpr, as the rule gateway‟s incoming task. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

          let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                                 c.sourceRef = this)->asSequence()->first() in 

             rule->first().triggeringEventExpr.task = InSequenceFlow.sourceRef  

                       and rule->first().triggeredEventExpr.task =  

                              OutSequenceFlow.targetRef 

4.3.1.2. The “Parallel Split” Pattern 

 

The pattern “Parallel Split” splits an activity into two or more activities which can be performed 

in parallel, thus allowing activities to be performed simultaneously or in any order. This pattern is 

shown in Figure 172. In Figure 172, after the end of an activity1, activities of the type activity2 … 

activityn are started being performed in parallel. In this case the triggeredEventExpr of the reaction rule 

attached to the rule gateway is R2ML ParallelEventExpression that contains two or more activities (i.e., 

activity2 ... activityn). In the standard BPMN, this pattern could be modeled with an AND-gateway, 

implicitly or through sub-Activities [148], but the advantage of using rules here is that we can define a 

condition on which parallel split could happen. 
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Figure 172. The “Parallel Split” pattern 

For this pattern, we have defined following OCL constraints: 
[1] The reaction rule attached to the rule gateway for its triggeringEventExpr need 

to have a task, while for its triggeredEventExpr need to have a 

ParralelEventExpression of two or more activities. 

context RuleGateway 

inv: rule->first().triggeredEventExpr.oclIsKindOf(ParallelEventExpression)  

           and rule->first().triggerringEventExpr.OclIsKindOf(Task) 

 

[2] The reaction rule attached to the rule gateway needs to have the same parallel 

tasks for its triggeredEventExpr, as the rule gateways‟ outgoing tasks, and the 

same task for its triggeringEventExpr, as the rule gateways‟ incoming task. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

     let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->asSequence()->first() in 

        let OutActivites : SequenceFlow.allInstances->select(c | c.sourceRef =  

                                   OutSequenceFlow.targetRef)->asSequence() 

                                             ->collect(e | e.targetRef) in 

       rule->first().triggeringEventExpr.task = SequenceFlow.sourceRef  

           and  

       rule->first().triggeredEventExpr->forAll(p | OutActivities->exists(p)) 

               

4.3.1.3. The “Synchronization” Pattern 

 

The pattern “Synchronization” merges two or more parallel activities into one activity. An 

example is presented in Figure 173. In the figure, after all parallel activities of the types activity1 … 

activityn-1 have ended, an activity of the type activityn is started. This pattern in the standard BPMN 

could be represented with an AND-gateway or partially through sub-Activities [148]. By using the 

reaction rule attached to the rule gateway, we can decide under which condition parallel activities will 

merge into one. This condition could be changed at run- or design-time. 

 
Figure 173. The “Synchronization” pattern 

For this pattern, we have defined following OCL constraints: 
[1] The reaction rule attached to the rule gateway for its triggeringEventExpr 

needs to have a ParallelEventExpression of two or more activities, while for its 

triggeredEventExpr needs to have a Task. 

context RuleGateway 

inv: rule->first().triggeredEventExpr.oclIsKindOf(Task)  

   and rule->first().triggerringEventExpr.oclIsKindOf(ParallelEventExpression) 

 

[2] The reaction rule attached to the rule gateway need to have the same parallel 

tasks for its triggeringEventExpr, as the rule gateways‟ outgoing tasks, and the 

same task for its triggeredEventExpr, as the rule gateways‟ incoming task. 
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context RuleGateway 

inv: let InSequenceFlows : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()in 

       let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->asSequence()->first() in 

         rule->first().triggeredEventExpr.task = OutSequenceFlow.targetRef  

           and  

             rule->first().triggeringEventExpr.eventExpression->forAll(c |  

                           InSequenceFlows->exists(e | e.sourceRef = c) )                       

 

4.3.1.4. The “Exclusive Choice” Pattern 

 

The pattern “Exclusive Choice” chooses one of several activities for performing based on a 

control data. In an example of Figure 174, after the end of an activity1, if the condition specified on a 

reaction rule attached to the rule gateway R by the predicate and condition is true, an activity2 is started 

to execute. Otherwise, an activity3 is started. The negative choice is denoted with a crossed line 

between R and activity3 in Figure 174. It should be noted that we used the crossed BPMN outgoing 

sequence flow from a gateway, which is chosen when the condition of the attached rule(s) evaluates to 

false. This means that we must have exactly two reaction rules attached to the rule gateway, where the 

condition is the same, only negated on the second rule. When the first rule condition evaluates to true, 

the non-crossed outgoing sequence flow is chosen, and when it evaluates to false, the crossed sequence 

flow is chosen (activity3 in this case). This pattern shows the main advantage of using rules to choose a 

flow in a process, as the rule‟s condition can be changed in run-time, but also in design-time. If this 

pattern were realized in the standard BPMN, with an AND-gateway, through sub-Activities or in a 

context [148], this advantage would not exist. 

 
Figure 174. The “Exclusive Choice” pattern 

For this pattern, we have defined the following OCL constraints: 
[1] The rule gateway must have exactly two reaction rules attached to it. 

 

context RuleGateway 

inv: rule->size() = 2 

 

[2] One of the outgoing sequence flows must have “Default” value for its 

ConditionType. We use “Default” mark on a crossed sequence flow from a gateway. 

 

context RuleGateway 

inv: let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                 c.sourceRef = this)->asSequence()->first() in 

            OutSequenceFlow->exists(e | e. ConditionType = “Default”) 

 

[3] The triggeringEventExpr and triggeredEventExpr of both reaction rules attached 

to the rule gateway must be of the Task type. 

 

context RuleGateway 
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inv: rule->first().triggeredEventExpr.oclIsKindOf(Task) and  

      rule->first().triggeringEventExpr.oclIsKindOf(Task) and  

         rule->last().triggeredEventExpr.oclIsKindOf(Task) and  

            rule->last().triggeringEventExpr.oclIsKindOf(Task) 

 

[4] The reaction rule whose condition is not negated must have the same Task for 

its triggeringEventExpr as the rule gateway‟s incoming Task, and for its 

triggeredEventExpr, the reaction rule must have the same Task as the rule gateway‟s 

outgoing (default) Task. In addition, the reaction rule whose condition is negated, 

must have the same Task for its triggeringEventExpr as the rule gateway‟s incoming 

Task, and for its triggeredEventExpr must have the same Task as the rule gateway‟s 

outgoing (non-default) Task. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

       let OutSequenceFlowNonDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  
                                                                                       ConditionType <> “Default”)->first() in 
         let OutSequenceFlowDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  

                                                                                       ConditionType = “Default”)->first() in 
  let NegatedRule : rule->select (c | c.conditions->  

                                       first().isNegated = “true”)->first() in 

               let NonNegatedRule : rule->select (c | c.conditions->  

                                      first().isNegated = “false”)->first() in 

 

 

 

  NegatedRule.triggeringEventExpr.task = InSequenceFlow.sourceRef 

      and  

  NonNegatedRule.triggeringEventExpr.task = InSequenceFlow.sourceRef 

      and 

  NegatedRule.triggeredEventExpr.task = OutSequenceFlowDefault.targetRef 

      and 

  NonNegatedRule.triggeredEventExpr.task = OutSequenceFlowNonDefault.targetRef 

4.3.1.5. The “Simple merge” Pattern 

 

The “Simple Merge” pattern starts executing an activity as soon as any of the preceding 

alternative activities ends. It is an assumption of this pattern that none of the alternative branches is ever 

executed in parallel. If this is not the case, the pattern “Multiple merge” or “Discriminator” is applied 

instead. In Figure 175, an activity of the type activityn is started when one preceding activity out of 

alternative activities of the types activity1 … activityn ends. An activity of the type activityn+1, thus is 

performed only once. In order to represent this pattern, we introduce an XOR gateway, followed by the 

reaction rule attached to the rule gateway, used to determine which activity would be chosen to trigger 

activityn+1. In this way, we enabled that the condition of the gateway, which selects the triggering 

activity, could be changed dynamically, instead of the static merge in the standard BPMN done by using 

only the XOR gateway [148]. 

 

 
Figure 175. The “Simple merge” pattern 
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For this pattern, we have defined following OCL constraints: 
[1] The reaction rule attached to a rule gateway for its triggeringEventExpr must 

have ChoiceEventExpression, while for its triggeredEventExpr must have a Task. 

 

context RuleGateway 

inv: rule->first().triggeredEventExpr.oclIsKindOf(Task) and  

      rule->first().triggeringEventExpr.oclIsKindOf(ChoiceEventExpression) 

 

[2] The reaction rule attached to a rule gateway, for its triggeredEventExpr, which 

is the same as the outgoing Task of the rule gateway. This reaction rule also must 

have the same Tasks in its ChoiceEventExpression, as the incoming Tasks of the rule 

gateway. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

       let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->asSequence()->first() in 

         let InActivites : SequenceFlow.allInstances->select(c | c.targetRef =  

                                   InSequenceFlow.sourceRef)->asSequence() 

                                             ->collect(e | e.sourceRef) in 

        rule->first().triggeredEventExpr = OutSequenceFlow.targetRef and  

        rule->first().triggeringEventExpr->forAll(p | InActivities->exists(p)) 

 

4.3.2. Advanced Branching and Synchronization Patterns 
 

In this section, we present patterns that characterize more complex branching and merging 

concepts, which arise in a business process. 

4.3.2.1. The “Multiple Choice” Pattern 

 

The pattern “Multiple Choice” is the generalization of the pattern “Exclusive Choice”. Based on 

a control data, this pattern chooses one or more activities to perform. In Figure 176, according to the 

reaction rule attached to the rule gateway (R1), after the end of an activity of the type activity1, if the 

condition specified by predicate1 and expression1 evaluates to true, an activity of the type activity2 is 

started. According to the reaction rule attached to the rule gateway Rn, if the condition specified by 

predicaten and expressionn is true, an activity of the type activityn is started. Either an activity of one of 

the types activity2 ... activityn or any combination of them in parallel may thus be performed. An 

activity may get performed one or more times, depending on the condition specified by the given 

expression and predicate, after which the branch continues without synchronizing with the other 

branches. As with the Exclusive Choice, we need to ensure that at least one outgoing branch is selected, 

so we also employ a default outgoing sequence flow from the inclusive gateway. The usage of rules in 

this pattern is important, as the main context criterion for this pattern that the information needed to 

calculate the logical conditions on the each of the outgoing branches is available at runtime, so by using 

rules and data from the vocabulary, this data could be changed dynamically (i.e., at run-time) or at 

design-time. This could not be realized in the standard BPMN only with the OR or Complex gateways, 

or without a gateway, but by using only condition sequence flows [148]. This reason for this in the 

standard BPMN is in the fact that such defined conditions are static in a process model. 
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Figure 176. The “Multiple Choice” pattern 

For this pattern, we have defined following OCL constraints: 
[1] Each outgoing sequence flow from the Inclusive gateway must be followed by the 

rule gateway, which have a reaction rule attached to it. 

 

context InclusiveGateway 

let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                 c.sourceRef = this)->asSequence()->first() in 

 OutSequenceFlow->forAll(e | e.targetRef.oclIsKindOf(RuleGateway)) 

 

[2] The one of the outgoing sequence flows must have a “Default” value for its 

ConditionType. 

 

context InclusiveGateway 

inv: let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                 c.sourceRef = this)->asSequence()->first() in 

            OutSequenceFlow->exists(e | e. ConditionType = “Default”) 
 

[3] The triggeringEventExpr of each reaction rule attached to each rule gateway R1 

... Rn is the same Task as the incoming Task of the Inclusive gateway, which 

precedes the rule gateways. The triggeredEventExpr of a reaction rule attached to a 

rule gateway is the same Task as the outgoing Task of the rule gateway. 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

       let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->asSequence()->first() in 

        rule->first().triggeredEventExpr.task = OutSequenceFlow.targetRef and  

        rule->first().triggeringEventExpr.task = 

                                           InSequenceFlow.sourceRef.sourceRef 

4.3.2.2. The “Structured Synchronizing Merge” Pattern 

 

This pattern represents convergence of two or more branches into a single subsequent branch. 

The pattern provides a means of merging of branches resulting from a specific Multi-Choice pattern 

earlier in a workflow into a single branch. Implicit action in this merging is the synchronization of all 

the threads of execution resulting from the preceding Multi-Choice pattern. In Figure 177, we have 

actually a Multi-Choice pattern (discussed in the previous subsection), where activity of one of the 
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types  activity2 ... activityn+1 or any combination of them in parallel may thus be performed, but with 

an exception that we have here a synchronization of all the branches into one sequence flow by using an 

inclusive gateway. The challenge with this pattern is that we do not know how many tokens (generated 

from a Multi-Choice pattern earlier) will be arriving for synchronization. Thus, we must be able to 

determine how many tokens are generated upstream, and for this we can use a reaction rule attached to 

the rule gateway (Rm) in Figure 177, by using the shared vocabulary.  

This pattern is only partially supported in BPMN with the OR gateway, because this pattern 

assumes a structured workflow context [148].  

 
Figure 177. The “Structured Synchronizing Merge” pattern 

The OCL constraints for this pattern are similar as for the previous pattern. 

4.3.2.3. The “Multiple Merge” Pattern 

 

The pattern “Multiple Merge” starts an activity once for each time two or more preceding 

activities end. It models convergence of two or more branches into a single branch. In Figure 178, an 

activity of the type activityn+1 is started when any preceding activity out of possibly parallel activities 

of the type‟s activity2 … activityn ends. An activity of the type activityn+1 thus is performed as many 

times as the number of the preceding activities. The reaction rule attached to the rule gateway is used to 

choose two or more activities. As this pattern is very similar to the “Simple Merge” pattern, the same 

OCL constraint holds here.  

 

 
Figure 178. The “Multiple Merge” pattern 

4.3.2.4. The “Discriminator” Pattern 

 

The pattern “Discriminator” models a point in a business process that waits for one of the 

preceding, possibly parallel activities to complete before starting the subsequent activity. From that 

moment on, it waits for all remaining preceding activities to complete and “ignores” them. Once all 

preceding activities have been completed, it “resets” itself, so that it can be started again. The pattern 

“Discriminator” generalizes to the pattern “N-out-of-M-join” where N threads from M incoming 

transitions are synchronized. This generalized pattern “Discriminator” can be modeled as a reaction rule 

attached to the rule gateway with a counter counting the number of the rule‟s triggering events of the 
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activity type and that have occurred. A model of this pattern is shown in Figure 179. The value of the 

counter variable is increased when every preceding activity (activity1 ... actitvityn) ends. The 

precondition of this pattern is based on the two variables: the counter variable set to 0 (as the input 

parameter) and the count variable set to the number of the wanted preceding activities. 

We supported this pattern by using a rule gateway. Without the rule gateway, this pattern in the 

standard BPMN can partially be supported, because this pattern can be supported only in the case of a 

multiple instance task, and because it is not clear how the IncomingCondition expression on the 

COMPLEX-join gateway is defined [148]. 

 

 
Figure 179. The “Discriminator” pattern 

For this pattern, we have defined following OCL constraints: 
[1] The reaction rule attached to the rule gateway, for its triggeringEventExpr, 

must have an ChoiceEventExpression; for its triggeredEventExpr must have a Task; 

and for its postcondition must have a DatatypePredicateAtom. 

 

context RuleGateway 

inv: rule->first().triggeredEventExpr.oclIsKindOf(Task) and  

      rule->first().triggeringEventExpr.oclIsKindOf(ChoiceEventExpression) and 

       rule->first().postcondition.oclIsKindOf(DatatypePredicateAtom) 

 

[2] The reaction rule attached to the rule gateway, for its triggeredEventExpr must 

have a Task, which is the same as the outgoing Task of the rule gateway. This rule 

also must have the same Tasks in its ChoiceEventExpression, as those incoming Tasks 

of the rule gateway. 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

       let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->asSequence()->first() in 

         let InActivites : SequenceFlow.allInstances->select(c | c.targetRef =  

                                   InSequenceFlow.sourceRef)->asSequence() 

                                             ->collect(e | e.sourceRef) in 

        rule->first().triggeredEventExpr.task = OutSequenceFlow.targetRef and  

        rule->first().triggeringEventExpr.task->forAll(p | InActivities->exists(p)) 

 

4.3.3. Structural Patterns 
 

Patterns in this group characterize design restrictions that specific workflow languages may have 

on the form of a process model that they are able to represent and how these models behave at runtime. 

They include two main aspects: loops and termination of a process instance. 

4.3.3.1. The “Arbitrary Cycles” Pattern 

 

The Arbitrary Cycle pattern is a mechanism for allowing sections of a process to be repeated (as 

a loop). This pattern allows looping that is unstructured or not block structured. The looping part of the 

process may allow more than one entry or exit point. This pattern is important for the visualization of 
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valid, but complex, looping situations in a single diagram. An rBPMN model of this pattern is shown in 

Figure 180. This pattern in rBPMN is represented by two reaction rules attached to two rule gateways: 

the rule gateway (R1) used to split the sequence flow and the rule gateway (R2) used to handle the loop 

exit condition in a process. The rule gateway (R2) based on its condition decides whether to return the 

sequence flow to the activity3 (loop) or to activity5 (end loop). 

This pattern can be supported in the standard BPMN by using Exclusive gateways, but the 

advantage of our solution is that we can more precisely define entry and exit looping conditions, as well 

as those conditions could be changed at both run- and design-time. We should also note that instead of a 

reaction rule attached to the rule gateway (R1), we could use a production rule also, which is invoked on 

some predefined condition. Based on this condition, the whole loop process can begin as well without a 

need to have a triggering event. 

 
Figure 180. The “Arbitrary Cycles” pattern 

The OCL constraints for this pattern are similar to the constraints in the “Exclusive Choice” pattern. 

4.3.3.2. The “Implicit Termination” Pattern 

 

The pattern “Implicit Termination” specifies that a given sub-process should be terminated when 

there are no remaining activities to be completed in the business process and no other activity can be 

started. In rBPMN, we supported this pattern through an implicit termination of an activity when all its 

sub-activities have completed. An rBPMN model of this pattern is shown in Figure 181. We use the end 

event to show that a particular path has completed, just as we would do in the standard BPMN [148]. 

However, we used reaction rules attached to the rule gateways after activity2 and activity3 tasks, in both 

paths, in order to dynamically determine whether the path should end or not. By combining these two 

rules, we can also make a ordering, when each of the sequences will end first. 
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Figure 181. The “Implicit Termination” pattern 

For this pattern, we have defined following OCL constraints: 
[1] The reaction rule attached to the rule gateway for its triggeringEventExpr must 

have an R2MLTriggeringTask, while for its triggeredEventExpr must have an EndEvent. 

 

context RuleGateway 

inv: rule->first().triggeredEventExpr.event.oclIsKindOf(EndEvent) and  

      rule->first().triggeringEventExpr.task.oclIsKindOf(R2MLTriggeringTask)  

 

[2] The reaction rule attached to the rule gateway needs to have the same Event for 

its triggeredEventExpr, as the rule gateway outgoing Event, and the same Task for 

its triggeringEventExpr, as the rule gateway incoming Task. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

          let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                                 c.sourceRef = this)->asSequence()->first() in 

             rule->first().triggeringEventExpr.task = InSequenceFlow.sourceRef  

                       and rule->first().triggeredEventExpr.event =  

                              OutSequenceFlow.targetRef 

 

4.3.3.3. The “N out of M join” Pattern 

 

As mentioned in the “Discriminator” pattern, this pattern also merges many execution paths. It 

performs a partial synchronization and executes the subsequent activity only once. In this case, instead 

of waiting for all preceding activates to be received, the N out of M pattern allows the modeler to define 

how many of the incoming activities are necessary to continue. We enabled this by using the “count” 

input parameter for a reaction rule attached to the rule gateway and shown in the “Discriminator” 

patterns (see section 4.3.2.4).  

 

4.3.4. Multiple Instance Patterns 
These patterns are used in a process where there are multiple instances of an activity active at 

the same time for the same process instance. Multiple instances can arise when an activity is able to 

create multiple instances of it once the activity is triggered. That is, a given activity is initiated multiple 
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times as a consequence of receiving several independent triggers, or when two or more activities in the 

process share the same implementation definition.  

4.3.4.1. The “Multiple Instances without Synchronization” pattern 

 

In a given process instance, multiple instances of an activity can be created. These instances are 

independent of each other and run concurrently. All the instances of the activity will be completed 

before the process continues. This means that only one Token will continue through the Process. This 

pattern, as well as other patterns in this group, can be model in two ways in rBPMN. In the first way by 

using the standard BPMN, to enable a task to have multiple instances, we need to ensure that the task‟s 

LoopType attribute is set to the “MultiInstance” and the MI_FlowCondition is set to “None” to ensure 

that the process continues after the activity task instance execution [148]. However, the problem with 

this approach is that we cannot control how many instances are created, nor to dynamically change the 

number of instances. Therefore, we propose a solution in rBPMN shown in Figure 182. Here, we 

employ a reaction rules attached to the rule gateway to precisely determine (based on “count” attribute 

number) how many instances of the activity1 will be created. We use two reaction rules attached to the 

rule gateway, one with positive and one with negative the same condition. This is the case as reaction 

rule can have only one condition defined on itself.  The subsequent activity (activity2) is initiated after 

the execution of the “activity1” instance, if the rules‟ condition is satisfied (counter=count). If not, the 

MI_Condition attribute of the activity1 is set to 1, so that only one instance of this activity is created in 

each iteration. After each iteration, the reaction rule updates (denoted with U and double-headed arrow) 

Entity‟s counter attribute, by adding 1 to its previous value. 

 
Figure 182. The “Multiple Instances without Synchronization” pattern 

For this pattern, we have defined following OCL constraints: 

 
[1] The rule gateway must have two reaction rules attached to it, as we need to 

have one rule with positive and one with negative condition. 

context RuleGateway 

inv: rule->count() = 2 

 

[2] The reaction rule attached to the rule gateway with the negated condition has 

for its triggeringEventExpr an R2MLTriggeringTask, and for its triggeredEventExpr a 

R2MLTriggeredGateway. 

context RuleGateway 

inv: rule->select(c | c.condition->first().isNegated) implies 

triggeringEventExpr.oclIsKindOf(R2MLTriggeringTask) and 

triggeredEventExpr.oclIsKindOf(R2MLTriggeredGateway) 

 

[2] The reaction rule attached to the rule gateway with non-negated condition has 

for its triggeringEventExpr an R2MLTriggeringTask, and for its triggeredEventExpr a 

R2MLTriggeredTask. 

context RuleGateway 
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inv: rule->select(c | not c.condition->first().isNegated) implies 

triggeringEventExpr.oclIsKindOf(R2MLTriggeringTask) and 

triggeredEventExpr.oclIsKindOf(R2MLTriggeredTask) 

 

[3] The reaction rule, whose condition is not negated, must have the same Task for 

its triggeringEventExpr as the rule gateway‟s incoming Task, and for its 

triggeredEventExpr must have the same Task as the rule gateway‟s outgoing (default) 

Task. In addition, the reaction rule with the negated condition, must have the same 

Task for its triggeringEventExpr as the rule gateway‟s incoming Task, and for its 

triggeredEventExpr must have the same Gateway as the rule gateway‟s outgoing (non-

default) Gateway. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

       let OutSequenceFlowNonDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  
                                                                                       ConditionType <> “Default”)->first() in 
         let OutSequenceFlowDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  
                                                                                       ConditionType = “Default”)->first() in 

  let NegatedRule : rule->select (c | c.conditions->  

                                       first().isNegated = “true”)->first() in 

               let NonNegatedRule : rule->select (c | c.conditions->  

                                      first().isNegated = “false”)->first() in 

 

 

 

     NegatedRule.triggeringEventExpr.task = InSequenceFlow.sourceRef 

      and  

     NonNegatedRule.triggeringEventExpr.task = InSequenceFlow.sourceRef 

      and 

  NegatedRule.triggeredEventExpr.gateway = OutSequenceFlowNonDefault.targetRef 

      and 

     NonNegatedRule.triggeredEventExpr.task = OutSequenceFlowDefault.targetRef 

 

4.3.4.2. The “Multiple Instances with a Priori Known Design Time 
Knowledge” pattern 

 

The pattern “Multiple Instances with a Priori Known Design Time Knowledge” is similar to the 

previous “Multiple Instances without Synchronization” pattern. This enables creating many instances of 

one activity. The number of instances is known at design time. However, in this case, all instances of 

the multi-instance task must be completed before the subsequent activity is initiated (i.e. the multiple 

instances must be synchronized). This pattern can be implemented by defining a multi-instance task, 

which has the MI_FlowCondition attribute set to “All”, so that the process flow continues when all 

instances of an activity end [148]. However, the problem with this solution is to define precisely the 

number of created instances and the condition when those instances have completed.  

An rBPMN model is shown in Figure 183, where the activity2 is replicated a fixed number times 

(i.e., two times in our example) to be executed in parallel or sequentially. This number is defined at 

design time by using the condition on the reaction rule attached to the rule gateway. The LoopType 

attribute of the activity2 is set to MultiInstance. The activity2 task is to synchronize multiple instances 

of the Subprocess shown in Figure 183, so that once all sub activities in the Subprocess end, the 

activity2 also ends, and the next activity3 is started (or the business process ends).  

In this pattern, we have two reaction rules attached to the rule gateway. The first rule is invoked 

when input condition (counter=2) is false. In this case, the crossed sequence flow from the rule gateway 
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is chosen (the activity2 MI task is invoked). The second rule is invoked when the input condition 

(counter=2) is true. When this happens the Subprocess ends, and the activity3 task is invoked. 

 

 
 

Figure 183. The “Multiple Instances with a Priori Known Design Time Knowledge” pattern 

For this pattern, we have defined following OCL constraints: 

 
[1] The rule gateway has two reaction rules attached to it. 

context RuleGateway 

inv: rule->count() = 2 

 
[2] The reaction rule attached to the rule gateway with the negated condition has, 

for its triggeringEventExpr, an R2MLTriggeringEvent, and for its triggeredEventExpr 

an R2MLTriggeredEvent. 

context RuleGateway 

inv: rule->select(c | c.condition->first().isNegated) implies 

triggeringEventExpr.oclIsKindOf(R2MLTriggeringEvent) and 

triggeredEventExpr.oclIsKindOf(R2MLTriggeredEvent) 

 

[3] The reaction rule attached to the rule gateway with non-negated condition has, 

for its triggeringEventExpr, an R2MLTriggeringEvent, and for its triggeredEventExpr 

a R2MLTriggeredTask. 

context RuleGateway 

inv: rule->select(c | not c.condition->first().isNegated) implies 

triggeringEventExpr.oclIsKindOf(R2MLTriggeringEvent) and 

triggeredEventExpr.oclIsKindOf(R2MLTriggeredTask) 

 

[4] The reaction rule, whose condition is not negated, must have the same Event for 

its triggeringEventExpr as the rule gateway‟s incoming Event, and for its 

triggeredEventExpr must have the same Task as the rule gateway‟s outgoing (non-

default) Task. In addition, the reaction rule with the negated condition, must have 

the same Event, for its triggeringEventExpr, as the rule gateway‟s incoming Event, 

and for its triggeredEventExpr must have the same Event as the rule gateway‟s 

outgoing Event. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

       let OutSequenceFlowNonDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  
                                                                                       ConditionType <> “Default”)->first() in 
         let OutSequenceFlowDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  

                                                                                       ConditionType = “Default”)->first() in 
  let NegatedRule : rule->select (c | c.conditions->  

                                       first().isNegated = “true”)->first() in 

               let NonNegatedRule : rule->select (c | c.conditions->  

                                      first().isNegated = “false”)->first() in 
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    NegatedRule.triggeringEventExpr.event = InSequenceFlow.sourceRef 

      and  

    NonNegatedRule.triggeringEventExpr.event = InSequenceFlow.sourceRef 

      and 

    NegatedRule.triggeredEventExpr.event = OutSequenceFlowNonDefault.targetRef 

      and 

    NonNegatedRule.triggeredEventExpr.task = OutSequenceFlowDefault.targetRef 

 

4.3.4.3. The “Multiple Instances with a Priori Known Runtime 

Knowledge” Pattern 

 

In the pattern “Multiple Instances with a Priori Known Runtime Knowledge”, the number of 

instances of a given activity in a process is variable and may depend on characteristics of the business 

process instance or availability of resources. However, the number of instances is known at some stage 

during run-time, before the instances of that activity type need to be created. Once all instances are 

completed, an activity of some other type needs to be started. In Figure 184, the looping subprocess 

includes an activity2 which is started after the end of an activity1, and enabled by a reaction rule 

attached to the rule gateway. As in the previous pattern, we also have here two reaction rules attached to 

the rule gateway, but in this case, the condition is counter=count. Upon the start of a Subprocess, the 

activity2 task is performed for each its instance as many times as it is defined by a count variable. This 

variable may be set during the process by some task or by using an R2ML reaction or production rule. 

The activities of the type activity2 are executed sequentially. In the model of the pattern depicted in 

Figure 184, an implicit termination of the Subprocess is when all its sub-activities are completed and 

the Entity‟s “counter” attribute is equal to the “count” variable. The “counter” variable is pre-set to 0. In 

this case, the reaction rule evaluates to false, and the Subprocess ends after end of all activity2 

instances.  

In the standard BPMN, this pattern is supported by setting a multiple instance task‟s MI_Condition 

attribute to the number of required instances at “runtime” [148]. However, the solution with rBPMN is 

more flexible, as we can define more complex conditions on a rule gateway that control the execution of 

the activity2 in the Subprocess. We should also mention that the standard BPMN [88] does not have an 

integrated language for defining such expressions (conditions). 

 

 
Figure 184. The “Multiple Instances with a Priori Known Runtime Knowledge” pattern 

The OCL constraints for this pattern are the same as for previous pattern. 
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4.3.4.4. The “Multiple Instances with no a Priori Runtime Knowledge” 

Pattern 

 

In this pattern, the number of instances of a given activity is not known at design-time, nor it is 

known at any stage during runtime, until immediately before the instances of that activity type need to 

be created. Once all (multiple-)instances are completed, an activity of some other type needs to be 

started. The difference from the pattern “Multiple Instances with a Priori Runtime Knowledge” is that 

even while some of the activity instances are being executed or have already completed new ones can 

be created. An rBPMN model of this pattern is shown in Figure 185. The Subprocess is started after the 

end of activity1. In this Subprocess, activity3 is invoked multiple times, and activity2 along with the 

reaction rule attached to the rule gateway is used to determine if more instances of activity3 are needed. 

The activity2 can also increase an Entity’s attribute count, so that the number of instances increases. 

Upon the start of the Subprocess, if the condition attached to the rule gateway (and its associated 

reaction rules, as in the previous pattern) counter = count is false, the reaction rule with non-negated 

condition passes to the parallel gateway that executes activity2 and activity3 instances in parallel. The 

Entity‟s counter attribute is pre set to 0 before entering the Subprocess. The activity2 checks if more 

instances of activity3 are needed and record the decision by increasing the count attribute of the type 

Entity. The completion of activity2 again invokes the rule gateway. This loop continues until all 

instances of activity3 are completed. Similar to the pattern “Multiple Instances with a Priori Runtime 

Knowledge,” synchronization of multiple instances of activity3 is achieved through the implicit 

termination of the Subprocess when all its instances have completed. This actually means that when all 

activity3 instances have ended, the Subprocess also ends, and the next activity4 is started (or the 

business process ends). 

By employing reaction rules in this pattern, we supported this pattern, which is not supported in the 

standard BPMN as it lacks features to create new task instances dynamically [148]. 

 

 
Figure 185. The “Multiple Instances with no a Priori Runtime Knowledge” pattern 

For this pattern, we have the same OCL constraints, as for the “Multiple Instances with a Priori Known 

Design Time Knowledge” pattern. An exception is that for triggeredEventExpr of both reaction rules 

we have ParallelEventExpression with two Tasks (activity2 and activity3). 

 
[1] The reaction rule with a non-negated condition must have the same Event for its 

triggeringEventExpr as the rule gateway‟s incoming Event, and the same parallel 

tasks for its triggeredEventExpr, as the rule gateway‟s outgoing tasks preceded by 

a parallel gateway. In addition, the reaction rule with the negated condition must 

have the same Event for its triggeringEventExpr as the rule gateway‟s incoming 

Event, and for its triggeredEventExpr must have the same Event as the rule 

gateway‟s outgoing Event. 
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context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

       let OutSequenceFlowNonDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  
                                                                                       ConditionType <> “Default”)->first() in 

         let OutSequenceFlowDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  
                                                                                       ConditionType = “Default”)->first() in 
  let NegatedRule : rule->select (c | c.conditions->  

                                       first().isNegated = “true”)->first() in 

            let NonNegatedRule : rule->select (c | c.conditions->  

                                      first().isNegated = “false”)->first() in 

             let OutSequenceFlowParallelFlows : SequenceFlow.allInstances()-> 

                 select(c | c.sourceRef = OutSequenceFlowDefault.targetRef) in 

 

    NegatedRule.triggeringEventExpr.event = InSequenceFlow.sourceRef 

      and  

    NonNegatedRule.triggeringEventExpr.event = InSequenceFlow.sourceRef 

      and 

    NegatedRule.triggeredEventExpr.event = OutSequenceFlowNonDefault.targetRef 

      and 

   SequenceFlow.allInstances()->select(c | c.sourceRef =   

               NonNegatedRule.triggeredEventExpr.gateway)->asSequence() 

                         ->forAll(e | OutSequenceFlowParallelFlows->exists(e))   

 

4.3.5. State-based Patterns 
 

These patterns define situations for which solutions are most easily accomplished in process 

languages that support the notion of state. A state of a process instance includes a broad collection of 

data associated with the current execution including the status of various activities. The patterns in this 

group reflect the possibility that the business processes could be affected by factors outside of the 

business process engine. 

4.3.5.1. The “Deferred Choice” Pattern 

 

The “Deferred Choice” pattern is a divergence point in a business process where one of several 

possible branches is chosen. In this pattern, an environment selects an activity to be performed, usually 

by employing an event. Only one of the alternative activities is executed. This means that once the 

environment triggers one of the activities, the other alternative activities are withdrawn. According to 

the example of the “Deferred Choice” pattern in Figure 186, after the end of activity1, by using the 

Event-based exclusive gateway, only one of activities activity2 or activity3 is started depending on 

which intermediate message is first received. The rule gateways are used in both cases to decide 

whether the sequence flow should be followed or not, based on the predefined condition of the reaction 

rules attached to the rule gateways. So, the choice is made by the environment (event), and we 

additionally constrained every decision by using reaction rules. In this way, we enabled more precisely 

definition of this pattern. In the standard BPMN without the rule gateways, it is not possible to 

dynamically determine under what conditions activities should be invoked [148]. 
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Figure 186. The “Deferred Choice” pattern 

For this pattern, we have defined following OCL constraints: 

 
[1] A reaction rule attached to a rule gateway has for its triggeringEventExpr an 

Event, and for its triggeredEventExpr a Task. 

context RuleGateway 

inv: rule->first().triggeringEventExpr.event.oclIsKindOf(Event) and 

     rule->first().triggeredEventExpr.task.oclIsKindOf(Task) 

 

[2] A reaction rule attached to a rule gateway must have the same Event for its 

triggeringEventExpr, as the rule gateway‟s incoming Event, and the same Task for 

its triggeredEventExpr, as the rule gateway‟s outgoing Task. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

          let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                                 c.sourceRef = this)->asSequence()->first() in 

             rule->first().triggeredEventExpr.task = OutSequenceFlow.targetRef  

                       and rule->first().triggeringEventExpr.event =  

                              InSequenceFlow.sourceRef 

4.3.5.2. The “Milestone” Pattern 

 

The “Milestone” pattern enables an activity until a milestone (specific state) is reached. When 

the milestone is reached, the nominated task can be enabled. In this pattern, only one activity is selected 

to be performed, while all activities are completed and the end of the process is reached. According to 

the example of the pattern “Milestone” in Figure 187, after the start of a process, the sequence flow 

splits by using the parallel gateway. The first branch invokes activity1 and the flow reaches the rule 

gateway (R1), which enables the Entitys‟ “enabled” attribute. The second branch invokes activity2 and 

reaches the rule gateway (R2), which then use the Entity‟s “enabled” attribute for a condition to decide 

which flow will be selected. If the “enabled” attribute is true, then activity3 is invoked and the sequence 

flow is returned to the start of the branch. If the “enabled” attribute is false, activity4 is selected and the 

second branch ends. After invocation of the rule gateway (R1) in the first branch, activity5 is invoked, 

and the rule gateway (R3) is reached. The rule gateway (R3) then sets Entity‟s “enabled” attribute to 

false, and the first branch ends. When this happens, activity3 in the second branch cannot be invoked 

anymore, because the condition enabled=true on the rule gateway (R2) is not true. Each of the three rule 

gateways has a reaction rule attached to them. 

This pattern is not supported in the standard BPMN due to the lack of modeling support for 

states [148], which we solved by using reaction rules in rBPMN. 
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Figure 187. The “Milestone” pattern 

4.3.6. Cancellation Patterns 
 

These patterns characterize the concept of activity or process cancellation where enabled or 

active activity instances are withdrawn. Various forms of exception handling in process are also based 

on cancellation concepts. 

4.3.6.1. The “Cancel Activity” Pattern 

 

This pattern defines the ability that an enabled activity can be cancelled in some situations. If a 

task is started, it is stopped and the sequence flow is redirected. We show this pattern in Figure 188, 

where the exception handling is executed through an intermediate exception event that is attached to the 

boundary of activity1. If the trigger for the intermediate event occurs while activity1 is being performed, 

activity1 will be interrupted and the sequence flow will proceed through the intermediate event and 

proceed down the sequence flow to the rule gateway and to the Exception handler subprocess. This 

pattern is supported similarly in the standard BPMN [148], but we used the rule gateway to define the 

condition on the exception flow. This use of rule gateways can define whether the Exception handler 

will be invoked or not. The Exception handler subprocess is responsible to handle the generated 

exception, where in this case we just pass the message to the end event.  

 

 
Figure 188. The “Cancel Activity” pattern 

For this pattern, we have defined following OCL constraints: 

 
[1] The reaction rule attached to the rule gateway has for its triggeringEventExpr 

an Event, and for its triggeredEventExpr a SubProcess. 

context RuleGateway 

inv: rule->first().triggeringEventExpr.event.oclIsKindOf(Event) and 

     rule->first().triggeredEventExpr.subProcess.oclIsKindOf(SubProcess) 
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[2] The reaction rule attached to the rule gateway need to have the same Event for 

its triggeringEventExpr, as the rule gateways‟ incoming Event, and the same Task 

for its triggeredEventExpr, as the rule gateways‟ outgoing SubProcess. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

          let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                                 c.sourceRef = this)->asSequence()->first() in 

             rule->first().triggeredEventExpr.subProcess =  

                  OutSequenceFlow.targetRef and 

                  rule->first().triggeringEventExpr.event = 

                                            InSequenceFlow.sourceRef 

 

4.3.6.2. The “Cancel Case” Pattern 

 

The pattern “Cancel Case” in Figure 189 cancels the whole business process instance being 

executed. This pattern is similar to the Cancel Activity pattern. In this situation, however, an 

intermediate event is attached to the boundary of a Subprocess that contains other activities, rather than 

an activity (see Figure 189).  In this pattern, we have a Subprocess that is initiated by a start event and 

followed by a rule gateway with two reaction rules attached to it. The reaction rules attached to the rule 

gateway then decides based on their condition, whether to invoke activity1 or to cancel the Subprocess. 

The Subprocess can also be cancelled in the case if the activity1 task generates and error during its 

execution. When the exception is generated, the Fault handler attached to the Subprocess boundary 

passes the sequence flow to the Exception handler, which is then responsible to handle the exception. In 

this simple case, the Exception handler is used just to send the message. 

 This pattern is supported in plain BPMN [148], however the rule gateway enabled us to cancel 

case not only in the case when activity1 fails, but also if the predefined rule is not satisfied. 

 
Figure 189. The “Cancel Case” pattern 

For this pattern, we have defined following OCL constraints: 
[1] The rule gateway must have exactly two reaction rules attached to it. 
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context RuleGateway 

inv: rule->size() = 2 

 

[2] The one of the outgoing sequence flows must have the “Default” value for its 

ConditionType. 

 

context RuleGateway 

inv: let OutSequenceFlow : SequenceFlow.allInstances()->select(c |  

                 c.sourceRef = this)->asSequence()->first() in 

            OutSequenceFlow->exists(e | e. ConditionType = “Default”) 

 

[3] The reaction rule, whose condition is not negated, must have the same Event for 

its triggeringEventExpr as the rule gateway‟s incoming Event, and for its 

triggeredEventExpr must have the same Task as the rule gateway‟s outgoing (non-

default) Task. In addition, the reaction rule with the negated condition, must have 

the same Event for its triggeringEventExpr as the rule gateway‟s incoming Event, 

and for its triggeredEventExpr must have the same Event as the rule gateway‟s 

outgoing (default) Event. 

 

context RuleGateway 

inv: let InSequenceFlow : SequenceFlow.allInstances()->select(c | c.targetRef  

                              = this)->asSequence()->first() in 

       let OutSequenceFlowNonDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  
                                                                                       ConditionType <> “Default”)->first() in 

         let OutSequenceFlowDefault : SequenceFlow.allInstances()->select(c |  

                                c.sourceRef = this)->select(e | e.  
                                                                                       ConditionType = “Default”)->first() in 
  let NegatedRule : rule->select (c | c.conditions->  

                                       first().isNegated = “true”)->first() in 

               let NonNegatedRule : rule->select (c | c.conditions->  

                                      first().isNegated = “false”)->first() in 

 

 

 

  NegatedRule.triggeringEventExpr.event = InSequenceFlow.sourceRef 

      and  

  NonNegatedRule.triggeringEventExpr.event = InSequenceFlow.sourceRef 

      and 

  NegatedRule.triggeredEventExpr.event = OutSequenceFlowDefault.targetRef 

      and 

  NonNegatedRule.triggeredEventExpr.task = OutSequenceFlowNonDefault.targetRef 

 

4.4. Business rules patterns for agile business processes 
 

The authors of [42] [43] proposed a set of nine business process modeling patterns for full integration of 

business rules into business processes and how these patterns can be integrated in a standard language 

for SOAs (i.e., BPEL). In that research, business logics contained in business process models are 

externalized into business rules at design time. The assumption is that business processes can be made 

agile and adaptive at run-time. The externalized logic is represented by using derivation, constraint and 

process rules, which are related to certain parts of a business process models. Derivation rules are used 

for decisions in a process models, constraints are enforced by those decisions and process rules define 

logical dependencies of activities [43].  

In section 3.1.2 we show how can rules are used in the rBPMN language, and in the subsequent 

subsections, we will show how these three types of rules can be used in a business process models, 

following the presentation order from [42]. By representing them in rBPMN, we will show how these 
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patterns can be formalized by using a concrete rule language and make them more expressive. This will 

also show expressivity of rBPMN in representing these patterns, which is important for relation to SOA 

language, as they are mappable to BPEL language [42]. 

 

4.4.1. Control Flow Decisions 
 

A control flow defines when different activities are executed. At a specific point in the control 

flow there is a possibility to enter alternate execution paths. Such points are gateways in rBPMN. The 

decision logic is defined by different conditions that can be assigned to each output branch. The data 

that is necessary to evaluate the decision logic is called input data, and the result of the evaluation is the 

output data (used to determine which output branch should be followed).  

In this group, authors [42] [43] identified four patterns: Decision logic abstraction, Decision 

node to BR mapping, Decision with flexible input data and Decisions flexible output. 

4.4.1.1. The “Decision Logic Abstraction” pattern 

 

This pattern models decisions in such a way, that the decision logic is defined by a business rule 

(derivation) and not within the business process. The pattern allows for updating decision logic during 

runtime without redeploying the business process. An example of such a decision is “If a book is in the 

library, then the book available”. In this example, the rule connects the data flow, because the rule input 

is a requested book, while the output is the conclusion that the book is available. Additionally, all 

business rules can be stored in one place, e.g., Business Rule Repository, or within a rule set.  

A limitation of this pattern is the fact that input data and results of a rule are not flexible. They 

are defined within business processes and cannot be changed. The negative consequences are the loss of 

a holistic view onto a business process, because the business process decision logic is no longer visible. 

In rBPMN, we improve this by using URML for defining rule decision logic [42]. Business processes 

and business rules are developed separately, but they still use a common data model (R2ML 

Vocabulary). This data model can either be defined within the business process or used with business 

rule or the other way around.  

This pattern can be modeled by inserting a rule gateway into a business process to serve as a 

decision node. This rule gatway has a derivation rule and two production rules attached (see Figure 

190). The condition defined on the rule gateway, is mapped to the condition of the derivation rule. The 

condition on both production rules is the same, but only negated on the second derivation rule. 

Derivation rules is used to derive the fact (as described in section 3.1.2.2) and the two production rules 

are then used to produce the action based on that fact. If condition on the first production rule evaluates 

to true, the “result” sequence flow is chosen. If that condition evaluates to false, then the second 

production rule is invoked and the “not result” sequence flow is chosen.  The data for business rules is 

provided by the business process (i.e., expression in Figure 190). Based on this decision, the business 

process chooses appropriate branch to continue process flow.  
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Figure 190. The “Decision logic abstraction” pattern (Boolean choice) 

In the case when a decision node is not simply a boolean decision, i.e., when we have a multiple choice 

decision, a conditions defined on a rule gateway can be automatically serialized and the appropriate 

conditions can be mapped to rules attached to a rule gateway.  

 Here we have a rule gateway RGj to which we can assign n logical expressions: LE = {LE1, 

LE2, ..., LEn}, where for each logical expression LEj (j=1..n) exists exactly one outgoing sequence flow 

from a rule gateway. Each outgoing sequence flow (OFj) from a rule gateway is choosen if logical 

expression LEj is evaluated to true. However, for each logical expression, we can also have a false 

result. In that case, we need to have exactly one else for a rule gateway, whose logical expression is: not 

(LE1 Ç LE2 Ç...Ç LEn). So, each logical expression on a outgoing sequence flow from a rule gateway is 

mapped to a R2ML rule condition: R = {R1, R2, ..., Rn}. This means that each rule have assigned one 

logical expression LEj (j = 1..n) for its condition.  This pattern is shown in Figure 191. 

 In Figure 191 we have a derivation rule that is used to derive a fact (here we can have multiple 

derivation rules to derive more facts) and when that process is finished, all production rules are fired 

that have conditions satisfied (conditions based on derived facts). In addition, it is possible to have 

multiple branches running in parallel from a rule gateway, as a consequence of more production rules 

could be triggered. 

 
Figure 191. The “Decision logic abstraction” pattern (multiple choice) 

4.4.1.2. The “Decision Node to Business Rule Binding” pattern 

 

In this pattern, unlike the previous “Decision logic abstraction” one, a mapping is used to bind 

the decision node to a derivation and production rule pair dynamically. So, it is required that a business 

rule has a unique identifier, which is enabled in R2ML rules through their “id” property. It is important 
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to notice here, that a rule gateway may have multiple different derivation and production rules attached 

to it. The condition for execution of such rule is carried out in a conclusion part of a rule. The advantage 

of this pattern is that it overcomes limitations of the previous one, because business rules can be reused 

for different decision nodes within different business processes. In addition, this pattern enables us to 

dynamically attach different business rules to each decision node. Other business rules can be used to 

define the mapping between a decision node and a rule, such as production rules. This pattern is 

modeled in rBPMN and is shown in Figure 192, where in the left part of the figure one possible 

implementation for the mapping engine is shown. The Mapping Service is responsible to choose an 

appropriate rule (service) to be bound to the rule gateway. In the right part of the figure, we can see a 

conceptual mapping between the rule gateway (i.e. decisions node) and the derivation and production 

rule. 

 

 
Figure 192. The “Decision node to business rule binding” pattern 

4.4.1.3. The “Decision with flexible input data” pattern 

 

This pattern differs from the previous one because the decision node calls a business rule 

directly without providing the normal input data, which is usually passed to a rule gateway. The 

business rule just gets a process identifier, to allow the business rule to access the business process 

context, which contains all the data that are available for the process instance. The main advantage of 

this pattern is that it provides the business rule with an ability to access the relevant data, instead of 

relying on some provided data. This allows for changing dynamically the input data for a rule during the 

process execution. 

In this pattern, we need to populate the Process instance context object with business process 

instance variables, so that the rule can access them. The access to the business process instance context 

must be provided by a business process engine or handled within the business process. The limitation of 

this pattern is that not all context data of a business process are available during a business process 

instance runtime, so the designer of the business rule is responsible to limit the data used in a business 

rule to the data that are already available when the business rule is to be evaluated. Another 

consequence of the shared data model is that any business process schema change may make a change 

in the business rule necessary.  

An rBPMN model of this pattern is shown in Figure 193. The data (var) which passed to a rule 

from a process are used to identify a business process instance. For filling the context data object 

(variable), we use the FillContext task before the rule gateway. Then, the input data from the rule 
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attached to the rule gateway are populated from the process instance context, and the rule condition is 

defined by using the context variable.  

 

 
Figure 193. The “Decision with flexible input data” pattern 

4.4.1.4. The “Decision flexible output” pattern 

 

The output data of a decision node may be unknown when designing the business process. For 

example, the multiple choice decision node (gateway) may have three output branches. A rule can be 

used to decide if either one of the two predefined (static) branches is followed or if the third (dynamic) 

branch is followed. The third branch is dynamic because an activity, defined by a process rule, gets 

dynamically bound on to the business process flow.  

This pattern enables for assigning activities dynamically to decision output branches, which 

makes business processes very flexible. This is especially useful for handling exceptional decision 

results. The limitation of this pattern is that control flow is still defined within the business process, so it 

is needed to be specified what happens after the execution of the dynamic activity. The output branch 

can be a normal decision branch, can call a decision node again, or can terminate the business process.  

This pattern is shown in Figure 194. In this pattern, we have three production rules attached to 

the rule gateway for three output branches. If the conditions of the first two production rules are 

satisfied, the result = 1 and result = 2 flows are selected, respectively. In the case when result = 3, the 

third production rule is fired and it returns the serviceName to the Lookup Service task is invoked to 

choose a custom task to be invoked in a proceeding of a sequence flow, based on the serviceName. So, 

the rule gateway and its outgoing sequence flows are mapped into one of the attached rules. This 

enables a rule to choose a custom task, which is not initially (in design-time) defined in a standard 

sequence flow. 
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Figure 194. The “Decision flexible output” pattern 

4.4.2. Data Constraints 
 

Data constraints are used to define which values data objects can hold, and relations between 

them. Those constraints in process models are seen as a responsibility of the data model. The data 

model defines which data object can hold what kind of data. However, most of the data model defines 

simply data constraints, such as types of attribute values.  

Nevertheless, business processes have to deal with more complex business oriented data 

constraints, such as “If customer returns a car and the car has more than 5000km from the last service 

then send the car to the service”. It is reported that, some of the constraints even use derived data and 

not business process data [42], such as “the duration of a rental must not be greater than 3 months” 

These constraints could be modeled in a way that the data model expresses them, but this may 

have two major drawbacks: first, this hides the business logic from the business user, as these 

constraints are not seen from the business process; and second, major business process execution 

engines do not provide the ability to change a business process data model during runtime [42]. 

Additionally, constraints violation is need to be checked. Therefore, we need to check whether those 

constraints are satisfied or not during a process run time. 

4.4.2.1. The “Constraints at predefined checkpoint” pattern 

 

This pattern provides a solution to checking constraints validity on an activity‟s input and output 

data. As the position of an activity in a business process is known at design-time, the activity is a 

predefined checkpoint for constraints. This pattern can be used in the positions in a business process 

control flow where constraints should get checked are known at business process modeling time, and do 

not change during runtime. Thus, constraints can be used to validate data before or after the activity. 

The usage of business rule makes it possible to update these constraints or add additional constraints 

during runtime. 

In Figure 195, we show how this pattern is supported in rBPMN, by employing the Check 

constraint subprocess. This subprocess is used to check constraints for a chosen task. As data 

constraints in URML are represented as OCL constraints (invariants), we connect the rule gateway to 

the constraint (e.g., invariant, precondition, or postcondition), and if the constraint is not satisfied, an 

exception event is chosen from the rule gateway. Then, the Handle exception task is invoked to handle 

the exception. Those OCL constraints are defined on a data model. Constraints that are checked are 

usually related to data used in a sequence flow before this constraint check, and constraints use data 

from a process instance context. 
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Figure 195. The “Constraints at predefined checkpoint” pattern 

4.4.2.2. The “Constraints at multiple checkpoints” pattern 

 

This pattern allows one to dynamically define positions in a business process where constraint 

checks should be done implying that a single constraint can be checked (i.e., enforced) at multiple 

places. These places could be before and/or after each activity.  

To support this pattern, we define a mapping between a rule gateway, where constraints are 

checked, and OCL rules that should be evaluated. To retrieve necessary data for the constraint 

evaluation, constraints need to have an access to business process context (data), that is, there should be 

a mechanism enabling this constraint enforcement over the business process context. By using an 

existing rule gateway (similarly to the previous pattern), we avoid introducing new modeling concepts 

and we also avoid using Aspect Oriented Programming (AOP) as introduced in the original pattern [42], 

which is not supported by standard business process execution engines. In this pattern, we use the same 

constraint that is attached to multiple rule gateways in a process, that is, before and after activities. An 

rBPMN model of this pattern is shown in Figure 196. In the original pattern presented in [43], XSTL is 

used to add constraint check positions before and end of each activity. Here we used rule gateways in 

order to connect to the same constraint before and after tasks, so by employing this solution one can 

define the points in a process where the constraint checks will be done, and without using XSLT and 

AOP we avoid using additional technologies. In addition, these constraints can be checked by using 

OWL and SWRL reasoners, as we have mapped OCL and SWRL languages [84]. 

In Figure 196, rule gateways R1 and R2 are attached to the same constraint (invariant), while the 

rule gateway R3 is attached to another constraint. In all three cases, the intermediate exception event is 

invoked in the case when constraint is not satisfied, and in that case the Handle exception task is called 

to handle the exception. We should note that during the time, some of the rules may change, and due to 

their declarative nature, not the entire process need to be changed, but only places in a process where 

those rules apply. 
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Figure 196. The „Constraints at multiple checkpoints“ pattern 

4.4.2.3. The “Constraints enforced by external Data Context” pattern 

 

In this pattern, the business process data context is externalized, so a change in data can be made 

perceivable by an external applications or a business process that triggers the evaluation of business 

rules [42]. The business process and business rules can be modified without a need to update each other. 

The only common points are shared data objects. This implies that the business process must be halted 

during the business rule evaluation to prevent inconsistencies. This is a challenging task because the 

business process can execute tasks asynchronously. The other important thing is that any data change 

triggers the evaluation of all business rules. Therefore, we need a solution to optimize business rules 

execution by evaluating only relevant business rules.  

An important feature of this pattern is to monitor internal business process data. This needs to be 

supported by business process execution engines. Every change of data would trigger the business 

process evaluation, and the business process would be halted during the business rule evaluation and 

would be resumed after a possible constraint violation handling. The main advantage of this approach is 

to enforce constraints without any modification of the business process. 

 We model this pattern in rBPMN as shown in Figure 197. We use another business process 

(External process pool) to act as an external business process context upon which constraints can be 

validated. In this pattern, we propose replacing the task before which the data should be checked, with 

the subprocess that contains that task (as a placeholder). The subprocess called “Check constraints on 

Task” uses the message event to send needed data (or reference to complete process data context – by 

sending the processID) to the External process, which then receives data by using the Receive data task. 

Note that the message event can be located after the activity, too. When the data is received by the 

Receive data task, the integrity rule attached to the rule gateway R1 is used to check whether the data 

constraint is violated or not. If not, the Store data task is called and the process ends. Otherwise, the 

Handle violation task is invoked to handle the violation on data.  

 In order to check constraints in different places in a process, the process designer can manually 

replace each task with the Check constraints on the Task subprocess, or it can use ATL to automatically 

replace each task with the subprocess in a business process model. 
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 This pattern have two variants, variant A when the constraint violation is handled by a business 

process (this variant is shown in Figure 197), and the variant B when the business rule can be used to 

handle violations. In variant B, we can use another rule gateway with an attached reaction rule, instead 

of the Handle violation task in the External process pool, where that rule can be used to change business 

process data. 

 

 
Figure 197. The “Constraints enforced by external Data Context” pattern 

An important aspect of this pattern, which contributes to its agility, is that the constraints depend only 

on data objects, and not on process elements. This means that additional constraints can be added, 

without the change of main business process during runtime.  

 

4.4.3. Dynamic Business Process Composition 
 

These patterns provide solutions to modeling a business process with the use of process rules to 

enable dynamic business process composition during runtime. These rules enables to dynamically 

change of a business process execution, i.e., to select different parts of a business process or to assemble 

process fragments. The corresponding rules in R2ML are reaction and production rules, as they can be 

used to invoke tasks or subprocesses. 

4.4.3.1. The “Business rule-based subprocess selection” pattern 

 

The purpose of this pattern is to use rules to dynamically select a specified part of a business 

process depending on the current context of the business process. This pattern is applicable if in the 

business process, a diverse control flow option exists at a well defined position; and if so, new options 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

195 

 

might be required in the future. This pattern enables one to externalize these control flow options in 

subprocesses and to use business rules to make the selection logic agile. This makes it possible to 

dynamically add new subprocesses during business process runtime. 

This scenario is similar to the Decision with flexible output pattern, where for the Business rule-

based subprocess selection pattern we select (create) a subprocess instead of an activity. In this pattern, 

process rules are expressed as production rules attached to the rule gateway. These rules contain needed 

selection criteria to choose the appropriate subprocess. The condition part of the rules is based on the 

process context data that is pulled from the process. The action part of the rules returns a subprocess 

name. The agility provided by this pattern is that the subprocess selection criteria can be changed 

dynamically during runtime and new subprocesses can be defined after the main process has been 

deployed. 

This pattern is shown in rBPMN in Figure 198. As with the Decision with flexible output 

pattern, each outgoing sequence flow from a rule gateway is connected to the each production rule. The 

condition defined on an outgoing sequence flow is mapped to the corresponding rule condition. When 

rules‟ condition evaluates to true, a corresponding sequence flow is chosen. 

 
Figure 198. The “Business rule based sub process selection” pattern 

4.4.3.2. The “Business Rule based Process Composition” Pattern 

 

This pattern is important especially for long running processes, where unforeseeable 

circumstances can occur, so a predefined (static) sequence flow is too inflexible. Some parts of the 

standard business process stay the same, some are omitted under special circumstances and some parts 

have to be inserted additionally for a business process.  

 The use of business rules allows for automating the dynamic assembly of the business process 

parts (called process fragments) [43], but also to interfere with the execution of running business 

process instances by defining process rules that apply to a single business process instance. The main 

idea of this pattern is to divide the overall business processes into separate process fragments, where 

these process fragments can be assembled in different orders. It is also possible to add or define new 

process fragments during runtime. To be referenced by business rules, the process fragments do have an 

unambiguous identifier, and they share a common context to work on. 

 Business rules are used to define which process fragment has to be executed and under which 

conditions. To enable parallel execution of process fragments, the process rules can be expressed as 

derivation and production rules attached to a rule gateway. The derivation rules in its conclusion can 

reutrn a process fragment name, which is then used by a production rule to dynamically invoke that 

process fragment. The whole process is located in repeating subprocess, as the process fragment 

invocation is done while predefined conditions are satisfied (e.g., processRunning variable is true).   

 We represent process fragments in rBPMN as pools (Process 1 and Process 2), in Figure 199. 

The rule gateway uses derivation rules which based on predefined conditions in their conclusion part 
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have a next process fragment name to be executed, which is then executed by a production rule (by 

using the Invoke action). In addition, production rules can invoke multiple fragments in parallel. 

 

 
Figure 199. The „Business rule based process composition“ pattern 

An important aspect of this pattern is that enables process agility by dynamically changing the process 

fragment execution order. This is achieved by changing or adding new derivation rules to the rule 

gateway or to a ruleset. It should also be noted that this pattern has one main disadvantage, and that is 

the by assembling the process from fragments we may lose an overall picture of the entire business 

process. 
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5.  Implementation of the rBPMN Language and Case Studies 

 

In this section, we show briefly how the rBPMN language can be used to model service orchestrations, 

service choreographies and how it can be used in modeling agility business processes in different case 

studies. All case studies in this section are developed by using our methodology presented in section 

3.3, and we will describe them in such methodological way. 

 

5.1. Modeling service orchestrations in rBPMN language 
 

In order to show how rBPMN language can be used in modeling service orchestrations, we will use 

it in an on-line order scenario, by following the steps from our methodology presented in Chapter 3.3. 

Step 1 (Requirements specification). In a basic high-level process of the on-line order process, a 

customer requests a product with some quantity to buy from a seller. The seller then checks whether the 

requested product is available in stock. If that is a case, the seller creates an order and sends it to the 

customer for approval and payment. Otherwise, the seller informs the customer that the product is not 

available. If the customer accepts to pay for the product, the customer proceeds with the payment (by 

using some payment service) and sends the message to the seller about the payment. Then, the seller 

chooses a carrier for the paid product, based on some criteria such as the due date, available shipping 

quantity, and price. When the carrier is selected, the customer is informed about the requested product 

delivery, and the carrier and the customer proceed with the delivery process. From these requirements, 

we identified three parties involved: customer, seller and carrier(s), and that we have a certain number 

of tasks and messages exchanged between these parties, as explained in the steps below. 

Step 2 (Process design). In this step, we define a high-level process model, based on the re-

quirements. Variability points are defined as abstract activities and later modeled by using rules, 

depending on level of variability. In Figure 200, we show a business process model in rBPMN. The 

process is started by a customer (presented as a pool in rBPMN, i.e., Web service), which sends a 

product order request to the online seller, by using the Send product order request task. This request is 

sent in a form of a message that contains the product name and the requested quantity. When the seller 

receives the request from the customer by using a message start event, the seller checks whether the 

requested product quantity is available, and returns that information to the customer. If the product is 

available, the seller creates the order by using Create product order task and sends an order approval 

message to the customer by using the Confirm product order task. When the customer receives these 

messages, in the case that the seller returned that the requested product is not available, the process 

ends. However, if the product is available, the seller sends a message to the customer. The message 

carries information about the available quantity and price, based on which the customer decides whether 

to buy the product or not. If the received message about the product availability contains the wanted 

price and the quantity for the customer, the customer decides to buy the product (by using the Buy 

product task).  Otherwise, the customer aborts the order (by using the Abort order task) and the process 

ends.  

If the seller receives a confirmative message, the seller invokes the Delivery request subprocess to 

find a carrier that will ship the product. Otherwise, the Seller suspends the order by using the Suspend 

order subprocess. During the carrier selection, the seller goes through the list of carriers (represented as 

a multi-instance pool) and checks each seller (by using the Send availability request multi-instance task) 

whether it is available to deliver the quantity of the requested product to the customer in a given period 

of time. The carrier process is very simple. After reception of the availability request message from the 

seller, the carrier just uses the Check availability task to decide whether it can ship the requested 

quantity of the product to the customer or. Based on this decision, the carrier returns a corresponding 

message to the seller. Then, the seller uses its own logic to decide whether to select that carrier. If the 

carrier is selected, the seller informs the customer about the delivery by using the Send delivery info 
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task, and the process continues between the carrier and the customer, where the carrier ships the product 

to the customer. 

 

 
Figure 200. The on-line product order process in rBPMN language 

After the high-level definition of the process, we need to identify variability points and to estimate level 

of their variability. We identified four activities as variability points: i) Seller decision whether it have a 

product in the stock; ii) Customer response decision, i.e., is he going to buy a product; iii) looping 

through the list of carriers; and iv) Seller decision based on a requirement whether carrier satisfies 

requested conditions (prior to the carrier selection). We should note that the Check availability task in 

the Carrier pool is also a variability point, but for the sake of conciseness, we do not describe this point 

in detail. The activities that we identified as variable cannot be directly represented in an executable 

environment, because of their complex nature. When we have identified variability points, we need to 

estimate the level of their variability. Based on this level, we can decide whether identified variability 

points will be modeled by means of business rules. 

For the first variability point, Seller decision whether it have a product in the stock, the outgoing 

flow from this point depends on the contents of this activity and customer request. In addition, 

additional logic can be incorporated in this step to give a discount to the customer depending on the 

requested quantity. The customer can be registered at the seller, and the customer can consequently 

have an approved access to the further task. This makes the estimated frequency of change high, and as 

the source of changes is internal, this point can be modeled by using rules. The second variability point, 

Customer response decision, should also be modeled by using rules, as the customer may decide to buy 

a product based on a offer from the seller (price, discount, warranty, etc.), but it can also try to check 

the offer for the same product at different sellers. The third variability point, Looping through the list of 

carriers, is not a simple activity. This is the case because the seller should send an availability request 

to the list of carriers, and based on remaining carriers in the list, which can complete the request, the 

seller should send the availability request or end the subprocess, if the list is empty. However, the loop 

through the list of carriers could include only one type of carriers and the list of carriers can be 

dynamically updated. This means that the frequency of change is high, and the source of change is 

internal. Thus, this point should be implemented by using rules. The fourth variability point, Seller 
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decision based on a requirement whether carrier satisfies requested conditions, should be modeled by 

business rules, because its implication of a change cannot be easily understood. This is the case, as the 

seller can include more complex carrier selection, based on the number of carriers, combination of 

product shipment in certain area, available quote, etc., and also to update these conditions during the 

process execution. 

After we have the estimated level of variability, we need to identify workflow patterns for 

recognized variability points. For the first variability point, we choose the Exclusive choice pattern. 

With this pattern, we can model a selection process of one of several activities based on a control input 

data (message) and a given condition. A similar case is with the fourth variability point. The selected 

workflow pattern for the second variability point is the Deferred choice, as we need to choose one of 

several possible branches based on the seller‟s decision and a given condition. The third variability 

point is modeled with the Multiple Instances with a Priori Known Runtime Knowledge pattern, because 

we have to loop through multiple carriers and the number of carrier instances is variable. We discuss 

these patterns in detail in the rest of the section. 

Step 3 (Data design). In this step, we design underlying data objects (messages), by means of the 

rBPMN vocabulary. We use these messages to annotate message flows between involved partners. This 

annotation allows us to use messages in activities and rules as an input and output. We annotate regular 

messages with “message event type”, and fault messages with “fault message event type”. In the on-line 

product order process, we have two logical groups of messages sent, one between the customer and the 

seller and another one between the seller and the carrier. Regarding the first group of messages, the 

process starts when the customer sends a ProductOrderRequest message to the seller. In this message, 

we need to have a product name (as String) and a product quantity (as Integer). This message is 

represented with the prVar variable used in the process model. As a response from the seller, we have 

two output message flows, one when order is created and send to the customer for approval, and another 

one when the product is not available. If the product is not available, the seller sends the 

FaultOrderResponse message to the customer, with the available quantity and the price, so that the 

customer can decide whether to buy the available quantity. If the product is available, the seller creates 

an order, and the ApproveOrderResponse message is sent to the customer. This message is represented 

with the resp variable in the process. This message contains all important information about requested 

product: quantity, price and product name. Based on this information, the customer can decide whether 

to buy the product or not. On the other hand, the seller sends the AvailabilityRequest message to a 

carrier in order to check if that particular carrier is available to ship the requested product. This message 

contains the quantity, dueDate and desirable shipment price for the selected product. The 

AvailabilityRequest  message is represented with the aReqVar variable in the process  The carrier 

returns two messages, the FaultAvailabilityResponse in the case when it cannot ship the product, and 

the AvailabilityResponse, when it can ship the product in due date (including the quote and price of a 

product shipment). The latter message is represented with the aResVar variable in the process model. 

Step 4 (Rule design). When the process diagram elements and messages are defined, we need to 

implement rules for each identified variability point. We model the first variability point, Seller decision 

whether it have product in stock, by using reaction rules attached to the rule gateway (R1). We use 

reaction rules, because we have a message event as its trigger and we want to define a triggered action. 

These rules, based on the defined condition evaluates whether the requested product is available at the 

seller‟s side or not. We have here two reaction rules (see Figure 201): one with a positive condition, and 

another one with the negated condition. This is the case due to the nature of reasoning of rules, where 

the use of ELSE statements in rules may lead to reasoning problems [110][142]. If the product is not 

available at the seller‟s side in the requested quantity, the reaction rule with the negated condition is 

activated and the Reject product request task is executed, and followed by the FaultOrderResponse 

message sent to the customer. However, if the condition of the reaction rules attached to the rule 

gateway (R1) evaluates to true, the subprocess that contains the Create product order and the Confirm 

product order tasks is selected (we denote the negative condition output flows with a crossed line in 
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URML diagrams such as Figure 201). The resulting activity from this flow is the 

ApproveOrderResponse message, which is sent to the customer by using the Confirm product order 

task. Figure 201 also shows how we achieved traceability between rBPMN and R2ML elements. That 

is, all BPMN tasks (Create product order, Confirm product order and Reject product request) and 

messages (ApproveOrderResponse and FaultOrderResponse) have their corresponding parts in R2ML. 

The traceability is established through the rBPMN metamodel and the OCL constraints such as those 

given in Section 4.3. 

 

 
Figure 201. Reaction rules attached to the rule gateway (R1) in Figure 200  

Once the customer has received the ApproveOrderResponse message, by using the intermediate 

message event, the sequence flow goes to the rule gateway (R2), i.e., the second variability point 

(Customer response decision). The customer uses the rule gateway (R2) to decide whether to buy the 

product. This rule gateway also has two attached reaction rules, one with a positive and one with a 

negated condition (resp.price < 100 and prVar.quantity = resp.quantity). These two rules are shown in 

Figure 202. 
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Figure 202. Reaction rules attached to the rule gateway (R2) in Figure 200  

This condition means that the rule gateway‟s (R2) outgoing sequence flow will be chosen if the product 

price is less than 100 units and if the offered quantity is the same as the requested quantity. If the 

condition is satisfied, the Buy product task is used to send a message to the seller to inform the seller 

that the customer wants to buy the product. The actual ProductOrderRequest message is sent, but we 

omit it from Figure 200 for the sake of clarity. If the condition defined on the rule gateway (R2) 

evaluates to false, the Abort order task is used to send the message to the seller and the process ends for 

the customer. Once the seller has receive this message, it starts the Suspend order subprocess in order to 

cancel the order. During the execution of this subprocess, an exception can occur, just like we have 

shown for the Cancel case pattern (see section 4.3.6.2). In this case, the sequence flow goes to the 

Handle exception task, used to handle this task. On the other hand, once the seller has received the 

information that the customer wants to buy the product, the seller starts the Delivery request subprocess. 

The subprocess starts with the start event, which follows to the rule gateway (R3). This is actually our 

third variability point, Looping through the list of carriers. Here, we also employ two reaction rules 

attached to the rule gateway, one with a positive and another one with a negated condition (we omitted 

condition from diagram for the sake of simplicity – see Figure 203).  
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Figure 203. Reaction rules attached to the rule gateway (R3) in Figure 200  

The condition is defined as Counter.counterValue < Carriers.size, where after each positive evaluation, 

we increment the counter by one (by using Counter.counterValue = Counter.counterValue@pre + 1 

expression). If this condition evaluates to true, the sequence flow goes to the Send availability request 

multi-instance task, used to send the AvailabilityRequest message to each Carrier from the list of 

carriers. However, if this condition evaluates to false, the subprocess ends. When a carrier receives this 

message, it uses the Check availability task to evaluate whether the requested quantity of the product 

can be shipped in due time. If it cannot ship the product, the carrier returns the 

FaultAvailibilityResponse message to the seller. Otherwise, the carrier returns the AvailabilityResonse 

message to the seller, with the offered shipment price for the quantity. 

Then, we arrive to the fourth variability point, Seller decision based on requirement whether 

Carrier satisfies requested conditions, where we also use two reaction rules attached to the rule gateway 

(R4) to check if the shipment price returned from the carrier is less or equal to the requested price or not 

(see Figure 204). If so, the seller selects the carrier by using the Select carrier task and informs the 

carrier about that decision by sending a message. After this selection the process ends. Otherwise, the 

carrier is rejected by using the Reject carrier task, which is also used to send the appropriate rejection 

message to the carrier. Then, the sequence flow returns to the start of the subprocess (rule gateway R3). 

When the Delivery request process ends, the seller uses the Send delivery info task to inform the 

customer about shipment details. Once the customer has received this message, the process of shipment 

continues between the selected carrier and the customer (we omit this part for the sake of clarity). 
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Figure 204. Reaction rules attached to the rule gateway (R4) in Figure 200  

In the process shown in Figure 200, we have identified three different workflow patterns. The first 

pattern that we identified is the Exclusive choice pattern, which we used to define the first variability 

point in the process. We used this pattern in the Seller pool in order to select one of two available 

activities based on a condition. This pattern defined in rBPMN has two main advantages compared to 

the standard BPMN solution. First, the rule gateway (R1) and the subprocess that follows its positive 

conclusion share the same common vocabulary, i.e., they can access the same Product. Second, the 

content of the ProductOrderRequest message, used in rules condition, is not fixed, but can be changed 

at runtime on every Customer request. 

In this pattern, we can also recognize a relation between the described process and concrete 

services that can be used to implement the modeled process, and thus consequent service orchestration.  

Here, we actually can indentify several message exchanges between services called, and those message 

exchanges can directly be mapped to the standard Message Exchange Patterns. Here, we have an In-Out 

MEP. That pattern consists of two messages: a message received by the service from some other node, 

followed by a message sent to the other node. The In-Out MEP can return a fault message, which in this 

case is the FaultOrderResponse message. This relates to our earlier work where we have defined 

mappings between reaction rules and Web service descriptions [111], where a reaction rules are used to 

model a MEP. Triggering rule events are modeled as input messages, while triggered rule events are 

output messages. As event expressions in R2ML have an event type assigned, we can generate the 

complete message types (i.e., complexTypes). In addition, we can generate from our reaction rule 

model implementation in a concrete rule-based language. We have provided a full definition of several 

languages (e.g., Jess and Drools) by simulating semantics of reaction rules on production rule engines.  

We have also used the Deferred choice pattern in the Customer pool (the second variability 

point). After sending the ProductOrderRequest message, the sequence flow goes to the event-based 

gateway, with two possible outgoing alternatives (branches). These branches can be selected based on 

the received message event. When the message is received from the seller, we use reaction rules 

attached to the rule gateway (R2) in order to additionally constraint the sequence flow and to introduce 

new logic to that flow. 

When the customer sends a positive response to the seller, the Delivery request subprocess 

begins. In this subprocess, we have the Multiple Instances with a Priori Known Runtime Knowledge 

pattern (the third variability point). The Send availability request task is performed for each carrier in 
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the set of carriers. This set can be dynamically changed during the process execution by some reaction 

or production rule. The execution of this task is enabled by using the reaction rules attached to the rule 

gateway (R3). 

 

5.2. Modeling choreographies in rPBMN language 
 

In this section, we give an example of a service choreography modeled by the rBPMN language. 

The example is about of a flight booking process where a traveler uses an agent to book a flight with a 

Travel agency via the Trip request task. 

 Step 1 (Requirements specification). In our flight request process, a traveler agent requests a trip 

organization from a travel agency. When such a request is received, the travel agency starts with the 

airliner selection process. In this process, a request for a flight availability and price is sent to each 

airliner that the travel agency works with. Once received the request from the travel agency, an airliner 

calculates the price and checks if the requested number of seats is available on the requested departure 

date. Based on the outcome of this check, the airliner sends a message to the travel agency that a flight 

is not available or sends the flight is available (with price for a seat). Using this infromation that is 

collected from airliners, the travel agency selects an airliner with the lowest price and contacts the 

airliner for reservation. After this, an e-ticket is issued to the traveler. If no airliner has available seats 

for the requested departure date, the traveler is informed about that. From the requirements, we 

identified three parties involved in the process: travel agent, travel agency and airliner. 

 Step 2 (Process design). The process starts when the Travel agency receives a request from the 

Traveler agent. In Figure 205, we show a business process model in rBPMN. Once the request is 

received by the Travel agency, the “Request price” subprocess is started. In this subprocess, the 

FlightRequest message is sent to each Airliner from the Airlines participant set, by using the “Request 

flight price” task. The message request is a message, which specifies the requested departureDate, 

arrivingAirport and seats attributes. When this request is received by the Airliner through the start 

message event, the Calculate price task is used to calculate the price for the requested departureDate, 

arrivingAirport and number of seats. If the number of seats left for the Flight on the requested departure 

date is less than the number of seats requested, then the the Send airline not found task is invoked; this 

is followed by the message sent FaultFlightResponse to the Travel agency. This message contains a 

fault description. If the number of seats left for the Flight is equal to the numbers of seats requested, the 

sequence flow which goes to the Send Flight Price task is selected. The Send Flight Price task is used 

to send the message that containts the flight number and price to the Travel agency. When all of the 

Airlines are contacted, the Request price subprocess ends. The the Travel agency checks whether we 

have any Airliners that satisfied conditions. If so, the Select Airline task is invoked; otherwise the Send 

airline not found task is invoked to inform the Traveler agent that no flights can be found for the 

requested departure date, arriving airport and requested number of seats. In the Select airline task, the 

Airliner is selected and the message is sent to the Airliner to reserve the seats on the flight. When the 

message is received by the Airliner, by using the intermediate message event, it updates the number of 

the seatsLeft on the Flight. Then, the Make reservation task is invoked, which creates the reservation 

and sends it to the Travel agency. When the Travel agency receives the message, it prepares and sends 

an e-ticket to the Traveler agent. 
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Figure 205. Interconnected behavioral choreography diagram for the Flight request process in rBPMN 

language 

When we define the overall process, we need to identify variability points in the process. In the Flight 

request process, we identified three variability points: i) Airliner decision whether flight is available, ii) 

Selection of airliner; iii) Airliner update of a current flight state. When we identified the variability 

points, the next step is to estimate their level of variability. Based on their variability, we can infere 

which ones should be implemented by business rules. 

 Regarding the first variability point, Airliner decision whether flight is available, the process 

flow forks at this point according to the available flight and additional requests. For this point, the 

source of change is internal, and the frequency of changes is high, because the airliner can give 

additional discounts based on the number of seats requested. The process flow also forks according to 

the departure date (e.g., if the departure date is away the discount is given). Based on this, this point 

should be modeled by business rules. The second variability point, Selection of airliner, should be 

modeled by rules, since the source of change is internal. In this particular case, at this variability point, 

we check whether the airliner that fullfills the request is found. However, at this place, the Travel 

agency can include additional conditions, for example, to filter airliners or to send additional requests to 

the airliner in order to collect more information. The third variability point, Airliner update of a current 

flight state, should also be modeled by business rules, because the source of change is internal, where in 

this point the Airliner could decide not only to update the seats left, but also to accept additional 

requests from a Travel agency. Another implication of variability here is that we can check if the user is 

a regular user and if so, to give him a discount. 

 The next step is to identify appropriate service interaction patterns for these variability points. 

For the first variability point, we choose the One-To-Many Send/Receive pattern. In this pattern, a 

participant sends out several requests to other different participants and waits for their responses. Here, 
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we have the multiple-instance Request price subprocess with the Request flight price task that is used to 

send messages to the Airliners. For the second variability point, we can recognize one variant of the 

Racing incoming messages pattern. The Trip request task is followed by an Event-based gateway, from 

which two possible branches could be selected based on the received message. The third variability 

point is modeled by the Receive pattern. When the message is received from the Traveler agency, and 

handled by using the intermediate event message, we need to decrease the number of seats left on the 

flight. In this point, after message reception, the Airliner can decide to follow multiple paths depending 

on the request. 

Step 3 (Data design). In this step, we need to define underlying data objects (i.e., messages) used 

in a proces. As noted in Section 5.1, we annotate message flows with messages, so that activities and 

gateways can have input and output data. Those messages are regular (marked with “message event 

type” stereotype) or fault (marked with “fault message event type” stereotype). In the concrete case of 

the Flight request process, the first message is sent as a flight price request from the travel agency to the 

airliner. This message is called FlightRequest and contains departureDtate, arrivingAirport and seats 

attributes, which are used in the process model. We have two messages as the response from the 

airliner. The first message is sent when a flight is available. This message is called FlightResponse 

message, and it contains flightNumber and price. If the flight is not available the FaultFlightResponse 

message is sent to the travel agency, and this message contains just the fault description. When the 

airliner is selected, the FlightAccept message is sent to the airliner, in order to confirm the reservation. 

This message has the flight number, number of seats, departure date and passenger name attributes. 

Step 4 (Rule design). In this step, we need to define concrete rules and corresponding process 

elements for each identified variability point. The first variability point, called Airliner decision whether 

flight is available, we modeled by using a rule gateway (R1) and two reaction rules attached to it (see 

Figure 206). We use reaction rules, because we have a message event as a triggering event and an 

activity as a triggered event. These rules are based on pre-defined conditions, which evaluate whether 

there are any free seats for the flight at requested departureDate. One rule has a positive condition and 

another has the negated condition. If the number of seats left for the Flight on the requested departure 

date is less than the number of seats requested, then the reaction rule with the negated condition is 

activated and the Send airline not found task is invoked; this is followed by the message sent 

FaultFlightResponse to the Travel agency. This message contains a fault description. If the condition on 

the reaction rule attached to the rule gateway (R1) evaluates to true, the sequence flow which goes to 

the Send Flight Price task is selected. In this case, the message flow is annotated by the FlightResponse 

message. As in the case of workflow patterns (see Section 5.1), we achieved here the same traceability 

between rBPMN and R2ML elements by using rBPMN metamodel. 
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Figure 206. Reaction rules attached to the rule gateway (R1) in Figure 205  

 

When the FlightResponse message is received by the Travel agency, it writes a reference to the 

Airliner which sends the message to the found participant set. When all of the Airlines from the Airlines 

participant set are contacted, the Request price subprocess ends and the sequence flow goes to the R2 

rule gateway. This rule gateway actually represents our second variability point (Selection of airliner). 

We use this rule gateway to check whether we have any Airliners in the found participant set. If so, the 

Select Airline task is invoked; otherwise the Send airline not found task is invoked to inform the 

Traveler agent that no flights can be found for the requested departure date, arriving airport and 

requested number of seats. We also have two reaction rules attached to the R2 rule gateway (see Figure 

207). In the Select airline task, the Airliner is selected and the message is sent to the Airliner to reserve 

the seats on the flight. 
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Figure 207. Reaction rules attached to the rule gateway (R2) in Figure 205 represented in URML 

When the message is received by the Airliner, by using an intermediate message event, the reaction rule 

attached to the rule gateway R3 is invoked to update the number of the seatsLeft on the Flight by using 

the update action (U) on the attached reaction rule (see Figure 208). This represents our third variability 

point, Airliner update of a current flight state. 

 
Figure 208. Reaction rule attached to the rule gateway (R3) in Figure 205  

In the process presented in this section, we identified three service interaction patterns. The first 

identified pattern is the One-To-Many Send/Receive pattern. Here, we have the multiple-instance 

Request price subprocess with the Request flight price task that is used to send messages to the 

Airliners, by using the information about partners from the participant set (Airlines). The reason for 

such a design decision is because the number of partners may or may not be known at design time and 

this represents an advantage of our approach. Another advantage of our approach is the shared 

vocabulary based on which two rule gateways R1 and R3 can access the same Flight instance to check or 

decrease the value of their seatsLeft attribute. Also, seats and departureDate values used in the rules‟ 

condition are not fixed, and can be dynamically changed in each request of the Travel Agency, by using 

the information from the FlightRequest message type and Flight class, respectively. 
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One another important aspect of this pattern is related to the In-Out Web service Message 

Exchange Pattern (MEP), as we can transform reaction rules into complete Web service descriptions 

[111]. That allows for transforming a (set of) R2ML reaction rule(s) model(s) into a MEP. Triggering 

events model input messages, while triggered events are output messages. As all event expressions in 

R2ML have an event (and, thus message) type assigned, we can generate the complete message types 

(i.e., complexTypes) from our reaction rules. Another important implication of our model is that for 

each reaction rule in R2ML, we can also generate its implementation in a concrete rule-based language.  

In the Airliner pool, we can see the Receive pattern. An important implication of using rules here 

is that we can attach another rule to the rule gateway to check if the user is a regular user and if so, to 

give him a discount. Given the nature of rules, if the discounting business logic changes, this can be 

dynamically reflected by the change of the rule. Finally, in the Traveler agent pool, we can recognize 

one variant of the Racing incoming messages pattern. Here, we can use rules to introduce additional 

logic, such as to check if the Traveler has enough money on the account to pay the ticket. 

Following our methodology, using interconnected behavioral models is not suitable for 

modeling choreographies, so we need to translate such models into interaction models. We first defined 

an interconnected model in order to better understand a coreography from the perspective of each 

participant. Then we can translate such model into an interaction model, as choreographies are not 

based on individual views on choreography, but on the global perspective. In Figure 209, we show an 

interaction model of the choreography for the flight request process. Modeling choreographies in this 

way has two major drawbacks, as reported in [22]: redundancy (where parallelism, branching, loops and 

timeouts are duplicated in the model) and potentially incompatible behavior (errors in the model in the 

case of event-based XOR-gateways). Interaction models do not have these problems, so we translated 

our model to the interaction model and shown in Figure 209. In the interaction model, we attached a 

message event to the each message interaction, while the pools are empty. In the interaction models, we 

need to connect the rule gateway to the participant (pool), so that the participant can invoke the rule and 

decide which branch to take. In the case of Event-based gateways, one of multiple events can happen, 

by occurring first in the process. Another implication of the interaction models is passing the participant 

references by using the participant sets. In the process model shown in Figure 209, we need to collect 

the Airliner participants in the found participant set, in order to pass that participant set to the rule 

gateway (R2) condition. A participant set (found) is attached to the message flow and each time when 

the flight price message is received, the participant is written in the set. 
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Figure 209. rBPMN interaction choreography model for the flight request process show in Figure 205 

From this section we can see the following contributions for modeling choreographies in rBPMN: 

 definition of message types exchanged between parties involved in the process, i.e., connection 

with structural models; 

 definition of message exchanges between rules, which enables: 

o dynamic changes of a business process, i.e., dynamic flow change because of rule 

declarative nature; 

o complete generation of Web service descriptions (with conditions); 

o definition of conditions on which some interaction can occur, as well as constraints; 

o modeling of complex events. 

 compliance of business processes with respect to the business policies and constraints: 

o compliance between orchestrations and choreographies, where rules defined in 

orchestrations can be used in choreographies, too; 

o generation of choreographies from orchestration models, i.e., traceability between 

elements in orchestrations and choreographies. 

 

5.3. Modeling Agile Business Processes in the rBPMN Language  
 

In this section, we show how the rBPMN language can be used for modeling more agile business 

processes (orchestrations), in terms defined for agile patterns (see section 4.4). In order to show how 

agile patterns can be used in modeling of business processes, we employ a book buying use case. We 

will present this use case using our methodology from section 3.3. 

Step 1 (Requirements specification). In this process, a customer requests a book to buy from a 

bookstore. When such a request is received by the bookstore, it checks whether the book is available 

and sends a message to inform the customer. In this point, a discount to the customer is calculated in the 

offered price. The customer then decides whether he is going to buy the book or not. If the customer 

decides not to buy the book, the process ends; otherwise, the customer sends a message to the bookstore 

to buy the book. Then, the bookstore decrease the number of the books in stock, calculates a discount to 

the customer (if any in applicable), checks if the customer is a silver or gold customer, and uses this 

information to send the book and receipt to the customer. When the customer receives the book, he has 
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seven days to decide whether he wants to hold the book or not due to various reasons such as a wrong 

book has been received. If he decides to return the book to the bookstore, he sends a mail to the 

bookstore. In the mail, he can request either his money to be returned back or a correct book  to be sent. 

In the former case, the payment is rollbacked and the money is returned to the customer, and in the later 

case, a new copy of the book is sent, where the customer again has seven days to decide if he wants to 

hold the book or not. From this requirements specification, we can conclude that we have two parties 

involved: the customer and the bookstore. 

Step 2 (Process design). In this step, we design the overall process model, based on the 

requirements specification. In Figure 210 we show a business process model in the rBPMN language. 

The process begins when the Customer logs in and requests the information about the book that (s)he 

wants to buy from a Bookstore. This request is modeled by using the Book request task that sends a 

message from the Customer to the Bookstore (represented by the Bookstore pool). This message request 

contains the requested quantity of the books and the book name. When such a request is received by the 

Bookstore, the Bookstore evaluates whether the requested book in the requested quantity is available in 

store. If the book is not available in the Bookstore or there is no requested quantity, the Send book not 

available task is preformed and is followed by a message sent to the Customer. This message contains 

the information why book is not available. When the customer receives such a message the process 

ends. If the book is available the process flow goes on to the Calculate discount task, which is used to 

calculate the discount depending on the Customer status (e.g., gold or silver user) and then to the Send 

book available task, which is used to send the message to the customer that the requested book is 

available. This message contains the price of the requested book. When this message is received by the 

customer, the Customer uses an activity to decide whether (s)he will buy the book with the offered 

price. If the Customer decides to buy the book, the Buy book task is used to send a message to the 

Bookstore to inform that the customer wants to buy the book. This message is the same as the first 

message sent in the process. The Bookstore, by sending the message after the Send book available task, 

uses an Event-based gateway to wait for the customer‟s decision for 24h (by using intermediate 

message timer event). If the message confirming that the Customer wants to buy the book is not 

received within 24h, a timeout event is generated and the process ends. However, if the Customer 

decided to buy the book, the Bookstore uses an activity to decrease a quantity in stock for the requested 

book and to issue a receipt for the Customer based on his status. After that, the Send book task is 

performed to send the book to the Customer, who receives the message by using the Receive book task, 

and the process ends. Then, the Customer has 7 days to decide whether he wants to return the book or 

not (e.g., if he received the wrong book). If the Customer decides to return the book, he sends an email 

to the Bookstore. When such an email is received by the Bookstore, depending on the Customer request, 

a new copy of the book is sent to the Customer or the payment is rollbacked and the money is returned 

to the Customer. 
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Figure 210. The book buy request scenario in rBPMN language 

After defining a high-level definition of the process, the next step in our methodology is to identify 

variability points in the process. In this process we identified following variability points: i) Customer 

login; ii) Bookstore decision whether the book is available; iii) Customer response decision, i.e., is he 

going to buy a book; iv) Bookstore update of a book stock quantity; v) Customer decision to return a 

book; vi) Bookstore rollback payment decision; and vii) Customer decision to abort the order. When we 

have estimated the variability points in the process, we need to identify the level of their variability and 

later we can decide whether those variability points need to be modeled by means of business rules. 

For the first variability point, Customer login, the user must login to the system in order to buy a 

book. Thus, this activity has the internal source of change and it should be implemented by using 

business rules. In addition, this activity has an organization-wide scope, i.e., the login activity usually 

needs to be done in multiple processes of the same organization. The second variability point, 

Bookstore decision whether the book is available, has an outgoing sequence flow that depends on the 

contents of this activity and on a customer request. In addition, in this step, the Bookstore could decide 

to give a discount to the customer depending on the requested quantity or the customer‟s status. As the 

source of change is internal and the frequency of change is high, this point should be modeled by means 

of business rules. The third variability point, Customer response decision, i.e., is he going to buy a 

book, should also be modeled by using business rules, as the customer may decide to buy the book 

based on the Bookstore offer (e.g., discount or price). So, in this case, the source of change is internal 

and frequency of changes is high. The fourth variability point, Bookstore update of a book stock 

quantity, requires an update of the book quanity in stock, as well as issuing a receipt based on the 

discount given to the customer. As the source of change in this case is internal, this variability point 

should be modeled by business rules. The fifth variability point, Customer decision to return a book, 

implies that the customer can decide to return the book based on her/his personal decision (i.e., human 

decision). Hence, this variability point should not be automated and implemented by using business 

rules. The sixth variability point, Bookstore rollback payment decision, is not a simple activity, the 

bookstore needs to decide whether to return the book to the customer, or to rollback the payment. This 

means that the frequency of change is high and the source of change is internal, and that this point 

should be modeled by business rules. The seventh variability point, Customer decision to abort the 

order, should also be modeled by business rules, a its implication of change cannot easily be 

understood. This is the case because the customer could involve more complex decision to abort the 

order, such as to check if the book name is correct, ISBN, or some other relevant information. 
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Once we have identified the variability points and estimated the level of their variability, we need 

to identify appropriate patterns for implementing these points. For the first variability point, Customer 

login, we choose the Constraints at predefined checkpoint agility pattern (see Section 4.4), because this 

pattern is used in the process to check predefined constraints, such as to validate data before the 

activity. The second variability point, Bookstore decision whether the book is available, is modeled as 

the Decision logic abstraction agility pattern. By using this pattern, we can define the business logic by 

using a business rule in the business process. The third variability point, Customer response decision, is 

also modeled by the Decision logic abstraction agility pattern, as the process flow is similar to the 

previous variability point. The fourth variability point Bookstore update of a book stock quantity, is 

modeled by using the Decision node to business rule binding agility pattern. This is the case, as we need 

to use a mapping to bind the decision node to the derivation rule dynamically, because in this case we 

want to calculate the discount based on the Customer status. The sixth variability point, Bookstore 

rollback payment decision, is modeled by the Business rule-based subprocess selection agility pattern. 

By using this pattern, we can dynamically choce the specified part of a business process, that is, in this 

particular case, that part is subprocesses. In addition, we can dynamically add a new subprocess during 

execution. The seventh variability point, Customer decision to abort the order, should also be modeled 

by the Decision logic abstraction agility pattern, because we need to incorporate some additional logic 

in a business process. 

Step 3 (Data design). In this step, we design messages that are exchanged between 

parties/activities, by using the rBPMN vocabulary. The process starts when the customer sends a 

CustomerBookRequest message to the Bookstore. This message containes the book name and quntity 

attributes, and it is represented by the cbr variable in the business process model. As a response from 

the bookstore, we have two outgoing message flows, one when the book is available and another one 

when the book is not available. If the book is available, the ApproveOrderResponse message is sent to 

the customer. This message is represented with the resp variable in the process model. This message 

contains a price of the requested book. Based on this message, the customer will decide whether to buy 

the book or not. However, if the book is not available, the FaultOrderResponse message is sent to the 

customer. This message contains the price for the book and the available quantity (that can be less than 

requested quantity). If the customer decides to buy the book, the CustomerBookRequest message is 

again sent to the bookstore. The last message sent in the process is the CustomerBookReturnRequest 

message, which is sent from the customer to the bookstore in the case when the customer decides to 

return the book. This message contains the book name along with a signal whether to abort the order or 

not. The message is represented with rReq variable in the process model. 

Step 4 (Rule design). Now, for each identified variability point and corresponding pattern, we 

need to define rules. We model the first variability point, Customer login, by using integrity rules in 

form of an OCL invariant, attached to the rule gateway (R1). The invariant is shown in Figure 210, and 

we defined it as {users->select(c | c.name = name and c.password = pass)->size() = 1}, which is used 

to go through the list of users and to check if there exists a user with a required name and password. If 

so, the user is logged in and the process flow goes to the Book request task. Otherwise, the process 

ends. The main advantage of our solution compared to the standard BPMN solution is that we can use a 

shared vocabulary in the whole process which is in this case for example important for the user login 

data. Additionaly, we can dynamically add different types of login during the process execution by 

changing the rule or by adding more integrity rules.  

Then, the process flow goes on to the second variability point, Bookstore decision whether the 

book is available, where we used reaction rules attached to the rule gateway (R2), as we have an event-

based request annotated by a message before the rule gateway
 
. These rules based on their conditions 

evaluate whether the book is available or not. Actually, we have two reaction rules (see Figure 211): 

one with a positive condtion, and another one with the negated condition (the condition checks if the 

book with the requested name and quantity exists in the store). If the book is available at the bookstore, 

the reaction rule with the positive condition is triggered, and the Send book offer subprocess with the 
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Calculate discount and Send book available tasks is performed. After that, the ApproveOrderResponse 

message is sent to the customer in the message flow. If the book is not available, the reaction rule with 

the negated condition is invoked, and the Send book not available task is performed. This is followed by 

the FaultOrderResponse message sent to the customer. Each of the reaction rules is attached to the 

corresponding outgoing sequence flows from the rule gateway (R2), i.e., rule with negated condition is 

attached to the crossed outgoing sequence flow. 

 
Figure 211. Reaction rules attached to the rule gateway (R2) in Figure 210 

When the customer receieves the ApproveOrderResponse message, by using the intermediate message 

flow, the sequence flow goes on to the rule gateway (R3), i.e., the third variability point (Customer 

response decision). The customer uses the rule gateway (R3) to decide whether to buy the book, as we 

have an annotated message before the rule gateway. This rule gateway has attached two reaction rules 

on it (see Figure 212), one with a positive condition and one with the negated condition (resp.price < 

100 and cbr.quantity = resp.quantity). The rule with positive condition will be enabled if the book price 

is less then 100 and the requested quantity is equal to the quantity offered by the bookstore; otherwise, 

the rule with the negated condition will be enabled. If the rule is satisfied, the Buy book task is used to 

send a message (BookOrderRequest) to the bookstore in order to inform the bookstore that the customer 

wants to buy the book. If the condition evaluates to false, the process ends. 
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Figure 212. Reaction rules attached to the rule gateway (R3) in Figure 210 

When the BookOrderRequest message is received by the bookstore, we come to our fourth variablity 

point, Bookstore update of a book stock quantity. Here, we use two tasks, the Invoke binding service 

and the Assign discount task, in order to assign appropriate discount rules to the rule gateway (R4). 

These rules are shown in Figure 213. We should note that we used these tasks and rules in the Calculate 

discount subprocess, too. Then, these rules are used to update the price in the BookOrderRequest, i.e., to 

decrease it by 10 money units if the customer is „gold‟ (type) or to decrease it by 5 money units if the 

customer is „silver‟. When the rule is selected and attached to the rule gateway (R4), the sequence flow 

invokes the rule gateway (R4). 
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a) b) 

Figure 213. Dynamic production rules attached to the rule gateway (R4) in Figure 210 

However, we have one more rule attached to the rule gateway (R4). We show this rule in Figure 214. 

We used this rule to decrease the quantity in stock of the requested book, and then to invoke the Send 

book task in order to send the BookOrderResponse message with receipt to the customer. This pattern 

(the Decision node to business rule binding pattern), enabled us not only to dynamically choose the 

appropriate rule that is used to give a discount, but also to allow a business users to either change or add 

new rules during the process execution. This is the main advantage of rBPMN here regarding the 

standard BPMN. 

When the book is received by the customer by using the Receive book task, we came to the fifth 

variablity point, Customer decision to return a book. As already stated, we do not model this point by 

using rules, as this decision implies a human decision, so it should not be automated in the process. 
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Figure 214. Static reaction rule attached to the rule gateway (R4) in Figure 210 

If the customer decides to return the book, the Book return request task is invoked in order to send the 

CustomerBookReturnRequest message to the bookstore, and this is our sixth variability point, the 

Bookstore rollback payment decision. Here, the bookstore need to decide whether to send a new book or 

to rollback the payment. This decision depends on the customer request, and we implemented this 

decision by using two reaction rules (see Figure 215), so that we can choose appropriate subprocess that 

is outgoing from the rule gateway (R5). If the user wants to abort the order (i.e., he does not want a new 

copy of a book, or a correct book if a wrong one is delivered), the abortOrder attribute of the 

CutomerBookReturnRequest message is set to true, and the rule with the positive condition is enabled; 

otherwise, the rule with the negated condition is enabled. In the first case, the Rollback payment 

subprocess is selected, and in the second case the Send book subprocess is selected. This enables for 

selecting dynamically the subprocess, as we can add more conditions to the rule gateway. 
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Figure 215. Reaction rules attached to the rule gateway (R5) in Figure 210 

If the customer decided to abort the order, the process flow goes on to the Money receipt task from the 

rule gateway (R6), which is enabled when the message is sent from the bookstore (by using the Send 

money back task). The rule gateway (R6) also has two reaction rules attached and uses the same 

condition as the rules shown in Figure 215, with a diffrence that the rule with the positive condition 

invokes the Money receipt task (i.e., enables the task and wait for a messsage from the bookstore), and 

the rule with the negated condition invokes the Receive book task. As these rules are similar to the one 

show in Figure 215m we omit their definition from the text of this thesis. 

 

5.4. rBPMN Language Implementation: the rBPMN Editor 
 

Along with the rBPMN language, we also developed an rBPMN graphical editor as a proof of 

concept for our conceptual contributions presented in this thesis. The editor is built by using the Eclipse 

GMF framework [29], which allows for producing a set of Eclipse plug-ins. We developed the editor 

starting from the rBPMN metamodel (see section 3.2) in the Ecore format.  

We should note here that we changed an actual implementation of the conceptual rBPMN 

metamodel in the rBPMN editor, due to GMF constraints. Regarding the triggering and triggered 

concepts from Figure 114, we inherited FlowNow from AtomicEventExpression, so that triggering and 

triggered events can be any activity, event or a gateway, because we didn‟t want to introduce new 

graphical elements in diagrams. 

In addition, a FlowNode is introduced as an attribute of the R2ML‟s ActionEventExpression class, 

so that we can have traceability between BPMN2 activities and R2ML actions. The R2ML‟s 

AtomicEventExpression is inherited from BPMN2 ItemDefinition, so that we can choose a 

AtomicEventExpression message in the structureRef attribute of the BPMN2 Message element. 

We will describe the usage of the rBPMN editor in the modeling of a rBPMN processes 

orchestration from section 5.1, in the following subsequent steps. 

 Step 1. Creating rBPMN diagram. When we run the generated editor as an Eclipse application, 

in the new Project Wizard (see Figure 216), we added a Rule-enhanced Business Process Modeling 

category, with RBPMN Diagram wizard. If the rBPMN Diagram wizard is choosed, the project and two 

models are created: a model file and a diagram file (both ecore), and the rBPMN process diagram is 

opened in the middle window of the application, denoted by the name entered in the wizard. 
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Figure 216. New rBPMN Diagram wizard 

When the diagram is instantiated, the application looks like in the Figure 217. In the center we 

have an actual model in rBPMN, which is drawn. On the bottom, we have Properties for the selected 

element (ecore property of an element) and on the right side we have the Palette with the tools for 

creating different rBPMN elements. The rBPMN editor represents a fully functional, BPMN2 editor, 

where rBPMN extensions are added in the Rules pallete group.  
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Figure 217. An empty instance of a rBPMN diagram in the rBPMN editor 

 

 Step 2. Process design. In order to create new elements in the editor, a user can select them from 

the Palette tab (see Figure 127). When the element is selected, a user just needs to click on the diagram 

to create that element. Such an element is created in the model file but also in the diagram file. 
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Figure 218. Palette in the rBPMN editor 

In the rBPMN language, similar to the BPMN language, we have pools as main elements, and a start 

event as the first element in a pool. We can start modeling by placing a pool on a diagram (Seller, 

Customer), and then we can add an empty start event in the pool (see Figure 219). Each element can be 

moved in all of the directions or resized. When an element is selected, by typing a text, it name can be 

changed. In addition, in the Properties window can be used to change basic attributes of any graphical 

element(see Figure 219). Next, we can draw connections between elements, i.e., a sequence flow 

between events and tasks in a one pool, and a message flow between tasks or events in the separate 

pools. In this way we can draw all of the rBPMN elements, including gateways, subprocesses, artefacts, 

etc. 
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Figure 219. Drawing basic process elements in the rBPMN editor 

 

 Along with basic BPMN2 elements we can add rule-based elements in a rBPMN process too, by 

using the tools from the Rules tab. These elements are vocabulary elements (class, their attributes and 

operations, and a generalization), different rule sets and concrete rules (derivation, integrity, production 

and reaction), as well as the rule gateway. The Rules tab includes elements for the rule gateway and 

rules connection (Rule connection), and also rule conditions, conclusions and actions (assert, retract, 

update and invoke). Near a rule gateway in a process, the user needs to add a particular ruleset 

(reaction, production, etc.) and a rule in the ruleset, with a connection from the rule to the rule gateway. 

All of the rule elements can be drawn in the rBPMN editor, however we recommend defining only a 

basic rule elements in the process editor and the using a more complete Rule editor for more precise 

rule definition (see step 3 and 4). 

 When the rBPMN process diagram is finished, we get the process as shown in the Figure 220. 
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Figure 220. The  rBPMN diagram from Figure 200 drawn in the rBPMN editor 

When the process diagram is finished, we can also add data objects from the Palette or a Participant set 

from the Rules tab in order to store reference to multiple participants in a process (multi-instance 

pools), as shown in Figure 220 for the Carriers participant set. 

 

Step 3. Data design. When a plain business process is drawn by using BPMN2 elements, we need to 

integrate vocabulary (data) elements in such process, as they are also used in rules definition. A 

vocabulary is a part of the ruleset and we first need to add a new ruleset to the process diagram (see 

Figure 221). In the ruleset we can add a rule of the ruleset type and connect the rule with the rule 

gateway by using the Rule connection. When the ruleset is created and a rule is added to it, by double-

clicking the ruleset the Rule editor opens. 
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Figure 221. Rule Set 1 in the rBPMN process diagram 

In the Rule editor, we can see the Pallete of tools for the particular ruleset type (see Figure 222). Here 

we can draw vocabulary and rule elements in a rule diagram. 

 

 
Figure 222. The Rules editor Palette 

First, we need to add vocabulary elements, which are then used in a rule definition. In order to do this, 

we need to add a rule from the Palette, and then all of the needed Classes for rule conditions and (fault) 

message event types, used in rule triggering and triggered event definitions or returned messages from 

an activity that is invoked by a rule action. These elements are added in a diagram by choosing the 

Class and Message Type elements in the Palette, respectively, and placing them to a diagram. Then, by 

chosing the Attribute or Operation Palette element, we can add needed attributes and operation in a 
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Class or Message Type. Each Message Type has a “message event type” stereotype, which can be 

changed in the Properties windows for a Message Type. In Figure 223 we have defined all of the 

needed vocabulary elements for the rule diagram shown in Figure 201, with the Product Order Request 

Event. The Message Type Connection is then used to connect the Product Order Request Event to the 

ProductOrderRequest? Message Type. 

 

 
Figure 223. Modeling a rule diagram in the rBPMN Rule ditor 

 

Step 4. Rule design. In this step, we connect the rules with conditions and events. When an Event is 

placed in a diagram, in this case, the Product Order Request and connected to the ProductOrderRequest 

message event type, we use the Triggering event Palette tool to connect them. Next, we use the 

Classification condition in order to connect the rule (RR id:1) with the Product class and to define the 

condition on this Classification condition. We do this by clicking on the Classification condition, in the 

Palette, then clicking on the rule (RR id:1) and release it on the Product class (see Figure 226). The 

actual condition can then be inserted in the diagram in the place of the condition line (or in the filter 

attribute in the Properties windows for the connection). When the condition is defined, we need to add 

activities in a sequential order (Create Order and Confirm Order), which are located in the main process 

after the rule gateway. These activities are invoked by the rule (RR id:1) if the condition on the rule is 

satisified (name = prVar.productName and quantityInStock > prVar.Quantity). In order to define 

sequential activities, we need to choose the Sequential Event from the Palette and put it in the diagram. 

After that, we can add activities (the Activity tool from the Palette) in the Sequential Event. When all of 

the activities are placed, we just need to connect the rule with the first invoked activity (Create Order), 

by using the Invoke action from the Palette, and also the ApproveOrderResponse message type with the 

Confirm Order activity by using the Message Type Connection. In addition, we have an Update action 

from the rule (RR id:1) to the Product class, used to decrease the quantityInStock attribute (needed in 

the case when the book order is created). In order to define this action in the diagram, we need to click 
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to the Update action in the Palette and then on the rule and release it on the Product class. The update 

variable can be inserted in the Properties window for the Update action, by changing the Class Variable 

text attribute. 

 

 
Figure 224. Modeling the first Reaction rule from Figure 201 

After defining the first rule, by using the same elements from the Palette we need to define the second 

reaction rule (RR id:2), define a negated condition of the first rule (Classification condition), and the 

Reject Product Request activity. Then, we just need to connect the rule (RR id:2) with the Product 

Order Request event (by using the Triggering event tool) and the Invoke action to the Reject Product 

Request activity. Lastly, we also need to connect the Reject Product Request activity with the 

FaultOrderResponse message, which is returned if the RR id:2 is activated, by using the Message Type 

Connection. 
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6. Analysis of the proposed solution 

 

In this chapter, we analyze the proposed rule-based language. In order to evaluate the rBPMN language, 

we compared it to the existing process modeling languages for interaction modeling, control flow 

modeling and regarding a way of improving the agility of a process. We conducted this evaluation by 

using service interaction patterns (see Section 4.2) for interaction modeling, control flow patterns (see 

Section 4.3) for control flow modeling and agility patterns (see Section 4.4) for the agility of a process. 

 

6.1. Comparison of Business Process Modeling Languges for Basic Control 

Flow Patterns 
 

In this section, we compare rBPMN the languages for workflow and business process modelling. If 

a language directly supports a pattern through one of its constructs, it is rated +. If a pattern is not 

directly supported, but can be “mimicked”, it is marked with +/-. Any solution which results in 

“spaghetti diagrams” or coding to compensate sematics of a pattern is considered as giving no support 

and is marked with -. Table XI includes the following langauges: Extended AORML [128], XML 

Process Definition Language (XPDL) [149], UML Activity Diagrams [96], BPEL4WS (Business 

Process Execution Language for Web Services) [49], WS-CDL (Web Services Choreography 

Description Language) [55], and BPMN 1.2 (Business Process Modeling Notation) [88]. We used the 

information about WS-CDL and BPEL workflow pattern support from [26], for XPDL, UML and 

AORML from [128], and for BPMN from [148]. 

 

Table XI. Comparison of workflow and business process modeling standards 

Pattern 

group 

Pattern Business process modeling languages 

  WS-CDL XPDL UML BPEL BPMN AORML rBPMN 

B
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ic
 c
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n

tr
o

l-

fl
o

w
 p

at
te

rn
s 

Sequence + + + + + + + 

Parallel Split + + + + + + + 

Synchronization + + + + + + + 

Exclusive Choice + + + + + + + 

Simple Merge + + + + + + + 

A
d
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ce
d
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ch
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n
d

 

sy
n
ch
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n
iz

at
io

n
 

p
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Multi Choice + + - + - + + 

Multi Merge +/- - - - +/- + + 

Discriminator 
- - - - - +/- + 

Synchronizing Merge 
+ + - + + - + 

S
tr

u
ct

u
ra

l 

p
at

te
rn

s 

Arbitrary Cycles - + + - + + + 

Implicit 

Termination + + + + + + + 

M
u

lt
ip

le
 I

n
st

an
ce

s 

p
at

te
rn

s 

MI without synchronization 
+ + + + + + + 

MI with a Priori 

Design Time 

Knowledge 

+ + + + + + + 

MI with a Priori 
Runtime 

Knowledge 

- - + - - + + 
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MI without a 

Priori Runtime 

Knowledge 

- - - - - + + 

S
ta

te
-b

as
ed

 

p
at

te
rn

s 

Deferred Choice + - + + + + + 

Interleaved 

Parallel Routing - - - +/- +/- - +/- 

Milestone + - - - - - + 

C
an

ce
ll

at
io

n
 

p
at

te
rn

s 

Cancel Activity 

+ - + + + + + 

Cancel Case 
+ - + + + + + 

 

From Table XI, we can see that all the languages support all the patterns in the first group – Basic 

control flow patterns. In this group, we introduced rules combined with a rule gateway in order to more 

define precisely conditions under which an activity or sequence of activities will be invoked. By using 

rules in this group, we enabled to define but also to change those conditions at run-time or at design-

time, also. This introduces a new flexibility to a process, because a process now must not be static any 

more. 

 The usage of rules in the second group of Advanced branching and synchronization patterns, is 

more obvious. For Multiple Choice pattern one of the important criterions for support of this pattern is 

that is needed to define logical condition(s) on outgoing branches, which can be changed in run-time. 

This is exactly the advantage of our solution, because reaction rules are connected to a vocabulary that 

can be changed at run-time, or at design-time. Additionally, we have supported a Discriminator pattern 

by using a reaction rule attached to the rule gateway to precisely define when subsequent activities 

should be invoked. This pattern is not fully supported in the standard BPMN, because the meaning of 

the Complex-join gateway, i.e., its IncomingCondition expression, is not clearly supported to be used 

for this pattern.  

 In the third group, Structural patterns, we used reaction rules to more precisely define loops‟ 

entry and exit points, where conditions on these rules can be changed dynamically. We should also 

mention that our solution enables us to make an ordering in activity invocation by using a shared 

vocabulary, as described in Implicit Termination pattern. Regarding the Arbitrary Cycles pattern, 

rBPMN business process diagrams do not impose any restrictions on the structure of cycles, a business 

process model in our may have multiple entry and exit points which are represented as reaction rules. 

 In Multiple Instances patterns group, our solution is crucial especially for patterns with and 

without a priori runtime knowledge. In this group, we used reaction rules to dynamically change a 

number of required instances, as well as to define complex conditions on which an activity should be 

invoked. For Multiple Instance with apriori design time knowledge, we enabled to precisely define a 

number of created instances, and to define a condition when all of those instances have completed. This 

is the case as plain BPMN [88] does not have a language for defining conditions/expressions. 

 In fifth group, State-based patterns, by using rules and their vocabulary we supported the 

Milestone pattern, which is not supported in plain BPMN, as it lacks of support for states. In this 

pattern, by using the same vocabulary between multiple rules, we enabled that some tasks could be 

invoked only when they are enabled by some precisely defined condition. The Interleaved Parallel 

Routing pattern is not supported completely in BPMN, nor in rBPMN, as core BPMN does not support 

interleaving groups or sequences of tasks [116]. 

 The final pattern group introduces two cancelling patterns. Our solution significantly improve 

Cancel Case pattern, because the usage of a rule gateway enabled us to cancel subprocess when activity 

fails, and also when a condition on a rule attached to the rule gateway is not satisfied. 
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6.2. Comparison of Languages Used for Modeling of Service Interaction 
Patterns 

 

In this section, we present the results of the comparison of various languages for service interaction 

and business process modeling. If a language directly supports a pattern through one of its constructs, it 

is marked with +. If a pattern is not directly supported, but can be “mimicked” (e.g., see Dynamic 

routing pattern), it is marked with +/-. Any solution, which results in multiple diagrams or coding is 

considered as giving no support and is rated -. Table XII includes the following languages: WS-CDL 

(Web Services Choreography Description Language) [55], BPMN 1.2 (Business Process Modeling 

Notation) [88], Let‟s Dance [150], BPEL4Chor [23] and rBPMN. For evaluation of Let‟s Dance and 

BPMN, we relied on the work reported in [27]; for evaluation of WS-CDL and BPMN, we relied on the 

work from [26], for evaluation of BPEL4Chor we used the findings from [23] and for iBPMN and 

BPMN, we relied on the results from [25]. For evaluation rBPMN, we reported on the results from 

modeling the service interaction patterns shown in Section 4.2. 

 

Table XII. Comparison of workflow and business process modeling languages for service interaction 

patterns 

Pattern 

group 

Pattern Language 

  Let‟s 

Dance 
BPMN 

WS-

CDL 
BPEL4Chor 

ext. 

BPMN 
rBPMN 
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Send 
+ + + + + + 

Receive 
+ + + + + + 

Send/Receive 
+ + + + + + 

 
S

in
g
le

-t
ra

n
sm

is
si

o
n
 

m
u
lt

il
at

er
al

 

in
te

ra
ct

io
n
 p

at
te

rn
s 

 

Racing incoming 

messages 
+ + + + + + 

One-to-many send 
+ - +/- + + + 

One-from-many 

receive 
+ - + + + + 

One-to-many 

send/receive 
+ - +/- + + + 

M
u
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i-
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n
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Multi-responses 
+ + + + + + 

Contingent requests 
+/- - +/- + +/- + 

Atomic multicast 

notification - - - - - - 

R
o
u
ti

n
g
 

p
at
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rn

s 
 Request with referral + - + + + + 

Relayed request + - + + + + 

Dynamic routing - - +/- +/- +/- +/- 
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From Table XII, we can see that all languages support the first group of patterns, single-transmission 

bilateral interaction patterns, as this group of patterns is based on simple send/receive message 

interactions between two parties, which are supported in all the studied languages. The rules in this 

group of patterns, by leveraging a rule gateway, are used to define more precisely conditions under 

which the messages could be exchanged, as well as, for handling fault messages, as described for 

corresponding WSDL message exchange patterns in Section 4.1.As noted in the first group of patterns 

(see section 4.1.1), the Send pattern can be directly mapped into the Web Service Out-Only and Robust 

Out-only message exchange patterns (MEP), the Receive pattern with two MEPs: In-Only and Robust 

In-Only, and the Send/Receive pattern has two corresponding WSDL MEPs, Out-In and Out-Optional-

In. 

 In the second group of patterns, single-transmission multilateral interaction patterns, which deal 

with multilateral interactions, the Racing incoming messages pattern is supported by all the languages. 

However, in rBPMN, we introduced a rule gateway to fulfill one of the design choices for this pattern 

[6], to define the ranking among competing received messages, so that only the message that fulfills the 

rule‟s condition can be consumed. The next three patterns, including One-to-many send, One-from-

many receive, One-to-many send/receive, are not supported in BPMN 1.2, as reported in [22] that 

“BPMN cannot specify to which participant a message is sent, only the participant type is defined”. In 

addition, the One-to-many send and One-to-many send/receive patterns are only partially supported in 

WS-CDL, as the number of message recipients is not known at design-time [26]. Thus, as we cannot 

know how to distinct between different participants of the same type (multi-instance Pool‟s) in BPMN 

1.2, we introduced participant sets and reference passing in rBPMN (as in extended BPMN), along with 

the multiplicity of participants (Pool‟s). These participant sets are similar to reference sets and 

references in extended BPMN and iBPMN, which are used to reference particular participants in 

patterns that have multiple participants of the same type involved. The importance of using rules in this 

group of patterns, especially for the One from Many Receive and One to Many Send/Receive patterns, 

is in defining the stop and success conditions. These conditions are precisely defined in a declarative 

way, by using a rule gateway to decide whether the interactions are complete or whether they are 

successful completed or not. We must say that all the other languages but rBPMN can not define such 

conditions, even though they are required in these patterns. Also, the rules are used to define conditions 

under which tasks could be invoked. 

 In the third group of patterns, Multi-transmission interaction patterns, where one participant 

sends (receives) more than one message to (from) the same logical participant, the Atomic multicast 

notification patterns is not supported by any of the languages presented. None of these languages 

supports distributed transactions needed for implementation of this pattern. The Multi-responses is 

supported in all the languages. However, the other languages did not show how the stop condition or 

fault message return should be implemented. On the other hand, in rBPMN, returning a fault message 

from an involved participant in an interaction and defining a stop condition as an exit condition in a 

process-based while loop is encoded by using the rule gateway. The usage of rules enabled us to more 

precisely define the abovementioned patterns, i.e., their design choices as described in [6]. The 

Contingent requests pattern is just partly supported in Let‟s Dance, WS-CDL and extended BPMN, as 

these languages cannot accept messages from previous requests that failed due to a timeout 

[25][26][27]. We have supported this issue by using the reaction rule attached to the rule gateway, to 

define the condition when such responses should be accepted. 

 In the fourth group, Routing interaction patterns, the first two patterns (i.e., the Request with 

referral and Relayed request patterns) are supported in all the languages except BPMN, as BPMN does 

not support link passing mobility. We supported this issue in rBPMN by passing participant references 

among participants. We used rule gateways in these two patterns to support decisions on invoking tasks 

and on the decision whether the participant should return the fault message or not, which is not 

implemented in other languages than rBPMN. The Dynamic routing pattern is only partly supported in 

WS-CDL and rBPMN. In rBPMN, we supported the dynamic routing condition by using the rule 
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gateway on data contained in the original request or in one of the intermediate steps. It is only partly 

supported as it define that a participant can insert new or delete existing interactions in the 

choreography at runtime, which is not currently supported in rBPMN nor in WS-CDL. 

We should also mention, that only extended BPMN (iBPMN) and rBPMN support service 

interaction patterns through interaction models, along with behavior interconnected models, as we 

consider interaction models important for defining process and service choreographies. 

 

6.3. Analysis of rBPMN usage for modeling agility patterns 
 

In this section we show comparisons of original support for agility patterns presented in [42] [43] 

and their support in rBPMN, as shown in previous sections. We analyze three pattern groups in usage of 

different rules types for their realization. Each pattern is realized by using one or more rule types. 

 

Table XIII. Summary of different rule types usage in agility patterns 

  Original agility patterns [42] rBPMN 
  Derivation 

rule 

Constraint Process 

rule 

Derivation 

rule 

Integrity 

rule 

Production 

rule 

Reaction 

rule 

C
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n
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Decision Logic 

Abstraction pattern 
+   +  +  

Decision Node to 

Business Rule 

Binding pattern 
+   +  +  

Decision with 

flexible input data 

pattern 
+   +  +  

Decision flexible 

output pattern 
+  +   +  

D
at

a 
co

n
st

ra
in

ts
 

Constraints at 
predefined 

checkpoint pattern 
 +   +   

Constraints at 

multiple 

checkpoints 

pattern 

+ +   +   

Constraints 

enforced by 

external Data 

Context pattern 

 +   +  + 
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m
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o
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n
 

Business rule-

based subprocess 

selection pattern 
  +   +  

Business Rule 

based Process 

Composition 
pattern 

+  + +  +  

 

In the first pattern group, called Control flow decisions, we supported the first pattern in the group 

(Decision Logic Abstraction pattern) by using derivation rules attached to a rule gateway, as this pattern 

implies forking based on a decision. In this group of patterns, we proposed how rule gateways can be 

used in the case of multiple choices from a one branching point. The main improvement we gain here is 

that by externalizing decision logic in rules, we allowed updating decision logic in runtime, without 

redeploying the business process. In addition, by using graphical representation for representing 

business rules we do not lose holistic view onto a process, as reported in [42]. For the second pattern in 
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this group, Decision Node to Business Rule Binding pattern, the mapping service is introduced to 

dynamically attach a business rule to a decision node (rule gateway). For this mapping, we propose 

using business rules, such as production rules. In the  Decision with flexible input data pattern, we have 

shown how input data for (not only) derivation rules can be passed during the runtime, while in the case 

of the Decision flexible output pattern we have shown how production rules can be used to dynamically 

assign activities to decision output branches, that should be invoked. This makes business process 

flexible, especially in the case of exceptional situations. 

 In the second group of patterns, we took into account three Data constraints. In patterns 

Constraints at predefined checkpoint and Constraints at multiple checkpoints, we used integrity rules to 

define constraints on a data model that should be checked before and after activities. Those constraints 

are defined on a data model, as they usually need to validate data. The usage of rules in these patterns 

enabled to update these constraints or add new constraints dynamically, durig runtime. In the third 

pattern, Constraints enforced by external Data Context pattern, we externalized data context, so that it 

can be seen by an external process or applications. For realization of this pattern, we used a subprocess 

that will send a message or data to the External process, where the integrity rule will be used to check 

data on violation and to handle that violation. As constraints only depend on data, this enables us to add 

constraints without the changing process elements. In variant B of this process, we propose using 

reaction rules to handle violations, where we can use rule to change process data. 

In the third group, we represented two Dynamic business process composition patterns. In the 

Business rule-based subprocess selection pattern, similarly to the Decision with flexible output pattern, 

we selected a subprocess that should be invoked instead of an activity, based on a production rule 

decision. The main advantage of this pattern is that the subprocess selection criteria can be changed 

during runtime. For the Business Rule based Process Composition pattern, we divided a business 

process into separate process fragments, where we dynamically invoked process fragment. By using 

derivation rules, we defined the process fragment execution ordering. 
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7. Conclusion 

 

In this chapter, we show results that are achieved by the research presented in this thesis. We also 

comment on the potentials of practical use of developed meta-model and transformations and give some 

reflections on the future plan. 

 

7.1. Achieved contributions 
 

In this thesis we developed a methodology for creation of rule-driven business processes and 

Service Oriented Architectures. We developed the language called rBPMN based on abstract 

(metamodel) and concrete syntax of a business process language (BPMN) and rule language (R2ML). 

rBPMN is a language that provides a systematic integration of rules in business process modeling. In 

addition, we developed a software editor for modeling rule-based business processes (rBPMN editor). 

The proposed rBPMN language is the first solution that provides a systematic integration of a rule 

modeling language with a business process modeling language. This was done by leveraging the 

principles of MDE and by weaving the metamodels of the studied languages. Our analysis of the 

expressiveness of rBPMN for modeling service compositions showed that rBPMN increases the level of 

modeling support for different kinds of patterns. The improvement is especially evident for the patterns 

that are state based and assume the use of multiple instances of the same activities. This stems from the 

rBPMN ability to represent reaction and production rules defined over explicitly specified business 

vocabularies. Our analysis also demonstrated some important benefits even for the patterns which could 

have been modeled by other languages. In particular, the use of rules in rBPMN in modeling service 

compositions increases the level of precision and dynamism. The precision of models is achieved 

thanks to the use of logic-expressions that, for example, allow for defining more precise conditions 

under which a certain process should terminate. Similarly, due to their declarative nature, rules can be 

updated at runtime. Thus, service orchestrations can be maintained more dynamically. Moreover, we 

have also defined a detailed methodology which guides service engineers through the main modeling 

tasks related to service compositions. Detailed contributions of this research are given in the rest of the 

section. 

In this thesis, we can emphasize the following conceptual contributions: 

 Overview and analysis of disciplines which are relevant for the subject of the research, namely: 

the basic concepts of the Model Driven Engineering are defined, Service compositions and 

business processes are introduced, and an overview of basic rule languages is given;  

 Overview of the design of a number of software and conceptual environments and modeling 

tools;  

 Contributions to the general rule markup language for representing rules on the Web (concrete 

and abstract syntax), named REWERSE I1 Rule Markup Language (R2ML);  

 Contributions to the general rule markup language (concrete and abstract syntax), named 

REWERSE I1 Rule Markup Language (R2ML); 

 Extension of the basic concepts of the BPMN2 meta-model, i.e., design of the rBPMN language;  

 Development of the integrated methodology for development of rule-driven SOAs; 

 Improvement of determining the variability of a process during process design; 

 Conceptual solution for integrating different types of rules and policies in a business processes; 

 Design and development of rBPMN language, which enables:  

o generating of more complete service descriptions, which are fully based on business 

vocabulary types; 

o dynamic updating of parts of business process logic by means of four different types of 

rules; 
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o capturing fragments of business logic in the form of business rules (easier to be 

understood and verified by business experts) and their visual positioning inside business 

processes; 

o connections between rule interchange with process modeling in order to show how parts 

of business logic can be shared between different business partners; 

 Definition of message exchange by using rules, which enables: dynamic change of the flow in a 

process; 

 Complete generation of Web service descriptions and other service execution languages (WS-

BPEL and BPEL4Chor), as well as the architecture for integration of rules into BPEL; 

 Conceptual traceability between orchestration and choreography models in rBPMN; 

 Integration of rules in busines processes evaluated by different types of patterns: Message 

Exchange Patterns, Control Flow patterns, Service Interaction patterns and Agility patterns. 

 Comparative analysis of the rBPMN language and other process languages; 

 Comparative analysis of the proposed approach for integration of rules into processes with other 

existing solutions. 
 

Practical contributions of this thesis are following: 

 Analysis of existing technologies that can be used in developing rule and process languages; 

 Comparative analysis of business rule approaches and languages; 

 Design and development of an rBPMN meta-model and concrete graphical syntax; 

 Implementation of the R2ML, BPMN2 and rBPMN metamodels; 

 Implementation of a fully functional BPMN2 process editor; 

 Implementation and adaptation of the rBPMN editor; 

 Analysis and detail testing of recommended solution;  

 Recommendation for further work directions based on presented research. 

 

7.2. Usage domain 
 

The integrated methodology presented in this thesis could be used not only for development of rule-

based business processes in rBPMN, but also in other similar languages. By employing the 

methodology, one can also include semantic descriptions in business process models. In addition, our 

methodology does not imply the usage of concrete service, but the selection of concrete service based 

on QoS parameters. 

An important advantage of our solution is that it is based on the BPMN, a de facto standard for 

modeling business processes, so rBPMN can be used by business experts. By using R2ML, it is possible 

to define rules in plain R2ML, but also to translate its rules to other rule languages (such as Drools or 

other rule languages for which we have defined translators [110]).  

Our solution (rBPMN language and editor) can be used in modeling both, service orchestrations 

and choreographies, which we proven by using them in differn types of process patterns. However, we 

should note that rBPMN editor is an academic project, so we have not made it in a way such as a final 

product for the customers. It is on the start of its lifecycle, and we are planning to make it an open 

source in the future. However, it is obviuous that our solution have great potential, so we can except 

that it will be developed as a commercial solution. 

 The usage of our solution is possible everywhere where business processes are developed, and 

especially in a complex business process or as a part of existing Service Oriented Architectures, which 

are going to be make executable on a concrete platform.  
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7.3. Further work and research directions 
 

Our further research includes work on conceptual solution for integration of rules into processes, as 

well as the practical implementation and extensiosn of rBPMN editor. Namelu, our plans may comprise: 

 In the future work, we will provide a detailed implementation of the transformations between 

rBPMN and BPEL. Currently, there are several solutions that connect service orchestration 

engines with rule engines (e.g., those of ORACLE, ILOG, and JBOSS), but all those rule 

engines are only for production rules. However, we will also include other three types of rules. 

 Another important task that we are working on is related to increasing the usability of our 

current tooling support for rBPMN.  

 We will work on the evaluation of the proposed graphical notation of rBPBM by using the novel 

principles for visual languages. 

 We will also work on mappings of a semi-structured English language into business rules of 

rBPMN, so that business analysts can easier understand and capture their rules. In this process, 

we will leverage the OMG‟s Semantics for Business Vocabularies and Rules (SBVR) 

specification. 

 Regarding the rBPMN editor implementations, we are going to integrate rBPMN editor with 

R2ML rule editor. 

 In addition, we will implement concrete transformations between two types of rBPMN 

choreography models (i.e., interaction and interconnected), as well as onto rule-enhanced service 

composition engines and service languages by using metamodel principles and model 

transformations. 
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Appendix A. Basic mappings between BPMN and WS-BPEL 
 

Not all BPMN process models could be mapped into BPEL orchestrations, as BPEL cannot 

support some constructs, such as unstructured loops [89]. In addition, an important issue is that a 

BPMN model can be mapped into BPEL, only if it does not contain any deadlocks (point in a process 

that contain tokens that cannot be removed), or a lack of synchronization (point in a process with more 

then one token). In the following section, for representation of the BPMN and BPEL mappings, we use 

structure from [89]. 

Process and Activities 

 

The first BPMN element that should be mapped to BPEL is pool. A BPMN pool is mapped to a 

BPEL <process> element. The name of the pool is the same as the name of the process, while the pool 

contents are placed into the <process> element (usually after partnerLink, variable and correlationSets 

declarations). This mapping is shown in Figure 225. 

 

 

<process name="[P-name]" 

     targetNamespace="[targetNamespace]" 

     expressionLanguage="[expressionLanguage]" 

     suppressJoinFailure="yes" 

     xmlns="http://docs.oasis- 

            open.org/wsbpel/2.0/process/executable"> 

   [C] 

</process> 

a) BPMN pool b) Corresponding BPEL code 

Figure 225. Mapping of the BPMN pool into corresponding BPEL code 

A BPMN Service task is mapped into a BPEL <receive> activity (as shown in Figure 226). The 

<receive> activity is used in BPEL to wait for a message to arrive. 

 

<receive name=”[Task]” 

         createInstance=”[instantiate? „yes‟”‟no‟”     

         partnerLink=”...” 

         portType=”...” 

         operation=”...”> 

</receive> 

a) BPMN Service task b) Corresponding BPEL code 

Figure 226. Mapping of the BPMN Service task into corresponding BPEL code 

A BPMN Receive task is also mapped into a BPEL <receive> activity (see Figure 227). 

 

<receive name=”[Task]” 

         createInstance=”[instantiate? „yes‟”‟no‟”     

         partnerLink=”[Task-service-ref]” 

         portType=”[Task-operation-interface]” 

         operation=”[Task-operation]”> 

</receive> 

a) BPMN Receive task b) Corresponding BPEL code 

Figure 227. Mapping of the BPMN Receive task into corresponding BPEL code 

A BPMN Send task is mapped into a BPEL <invoke> activity (see Figure 228). The <invoke> activity 

in BPEL is used to invoke an operation on a portType, offered by a participant. 
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<receive name=”[Task]”   

         partnerLink=”...” 

         portType=”...” 

         operation=”...”> 

</receive> 

a) BPMN Send task b) Corresponding BPEL code 

Figure 228. Mapping of the BPMN Send task into corresponding BPEL code 

A BPMN None task is mapped into a BPEL <empty> activity (see Figure 229). The <empty> activity 

in BPEL is “no-op” in a process. 

 

<receive name=”[Task]”   

         partnerLink=”...” 

         portType=”...” 

         operation=”...”> 

</receive> 

a) BPMN None task b) Corresponding BPEL code 

Figure 229. Mapping of the BPMN None task into corresponding BPEL code 

A BPMN Message structure is mapped is mapped into the BPEL, by using WSDL <message> type (see 

Figure 230). 
<Message name=”name”> 

  <StructureDefinition typeLanguage =  

      http://wwww3.org/2001/XMLSchema> 

  </StructureDefinition> 

</Message> 

 

<wsdl:message name = “[name]”> 

  [xmlSchema] 

</wsdl:message> 

a) BPMN Message structure b) Corresponding WSDL message type 

Figure 230. Mapping of the BPMN Message type into corresponding WSDL message type 

A BPMN interface, with its operation, is mapped to a corresponding WSDL portType with 

corresponding operations (see Figure 231). 
<Interface name=”name”> 

  <Operations> 

    <Operation name=”opname1”> 

      <inMessageRef ref=”msg1nameI”/> 

       <outMessageRef ref=”msg1nameO”/> 

       <errorRef ref=”errorName1”/> 

       ... 

     </Operation> 

     ... 

  </Operations> 

</Interface> 

<wsdl:portType name = “[name]”> 

 <operation name=”[opname1]”> 

  <wsdl:input message=”msg1nameI”/> 

  <wsdl:output message=”msg1nameO”/> 

  <wsdl:fault name=”errorName1”/> 

  ... 

 </operation> 

  ... 

</wsdl:portType> 

a) BPMN Interface b) Corresponding WSDL portType 

Figure 231. Mapping of the BPMN Interface into corresponding WSDL portType  

For sending or receiving BPMN messages that have an associated correlation set, a BPMN key-based 

correlation set (KeyBasedCorellationSet) is mapped to a corresponding BPEL correlationSet. A BPEL 

property alias messageType is attained from the message structure definition of the BPMN message key 

expression, and the message part name is attained from the message key expression [89]. The BPEL 

correlation element is set based on the associated key-baed correlation set of the BPMN activity, 

depending whether a message flow initiates or participates in an associated conversation. 

A BPMN subprocess is mapped into a BPEL <scope> activity (see Figure 232). The BPEL 

<scope> activity is used to define a nested activity with its own associated <partnerLinks>, 

<messageExchanges>, <correlationSets>, <faultHandlers>, <variables>, <terminationHandler>, 

<compensationHandler>, and <eventHandlers>.  
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<scope> 

 [Subprocess] 

</scope> 

a) BPMN Subprocess b) Corresponding BPEL code 

Figure 232. Mapping of the BPMN Subprocess into corresponding BPEL scope 

While the BPMN subprocess that containts an event for its first element, is mapped into a BPEL 

<scope> with a corresponding handler as follows: a BPMN message event is mapped to a BPEL 

onEvent <eventHandlers>, a BPMN timer event is mapped to a BPEL onAlarm <eventHandlers>, a 

BPMN error event is mapped to a BPEL <faultHandlers>, and a BPMN compensation event is mapped 

to a BPEL <compensationHandler>.  

 BPMN standard loops (repeating activity) with a testTime attribute “Before” or “After” 

execution of an activity are mapped to BPEL while and repeatUntil activities, respectively. Multi-

instance activities are mapped to BPEL forEach activities [89]. For the multi-instance activities, the 

<startCounterValue> attribute is set to 1, and the <finalCounterValue> is set to the value of the 

activities condition expression. The <scope> of a forEach activity is actually translated BPMN activity. 

Events 

 

A BPMN start message event is mapped to a BPEL <receive> activity with the createInstance 

attribute set to “yes” (we want to create a process instance), while compensation and error start events 

can only occur in a sub-process, and their mapping is described in the previous section. 

The BPMN non-boundary intermediate message event is also mapped to the BPEL <receive> 

activity, but with the createInstance attribute set to “no”, as we do not want to create a process instance. 

The BPMN timer intermediate event is mapped to the BPEL <wait> activity, while the BPMN 

compensation intermediate event is mapped to the BPEL <compensate> activity if the compensation 

event does not reference an activity, or to the BPEL <compensateScope>, otherwise. The BPEL <wait> 

activity is used to wait for a certain period, until a certain point in time has been reached. 

A BPMN None end event, which is used to mark end of the process, is mapped to an <empty> 

BPEL activity. A BPMN Message end event is mapped to a BPEL <invoke> activity, while a BPMN 

Error end event is mapped to a BPEL <throw> activity, which is used to generate a fault from the 

process [49]. A BPMN Compensation end event is mapped to <compensate> or <compensateScope> 

activities, similary to the corresponding intermediate event. A BPMN Terminate end event is mapped to 

a BPEL <exit> activity, which is used to end a business process instance [49]. There are also a few 

complex mappings of BPMN boundary events to the corresponding BPEL code [89]. 

Gateways 

 

The BPMN Exclusive data-based gateway is mapped to the BPEL <if> activity, as shown in 

Figure 233. An <if> activity in BPEL is used to select exactly one activity from a set of choices based 

on a predefined condition. 
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<if><condition>p1</condition> 

    [T1] 

  <elseif><condition>p1</condition> 

    [T2] 

  </elsif> 

  <else> 

    [T3] 

  </else> 

</if> 

a) BPMN Exclusive data-based gateway b) Corresponding BPEL code 

Figure 233. Mapping of the BPMN Exclusive data-based gateway into corresponding BPEL code 

 A BPMN Exclusive event-based gateway is mapped to a BPEL <pick> activity (see Figure 

234). The <pick> activity is used to wait for either more messages to arrive or a time-out to occur. 

When either of the triggers occurs, the corresponding child activity is performed. This mapping holds 

for cases with more than three branches. 

 

<pick createInstance=”[Instantiate]”>    

  <onMessage partnerLink=”e1-

participant]” operation=”e1op”> 

    [T1] 

  </onMessage> 

  <onMessage partnerLink=”e2-

participant]” operation=”e2op”> 

    [T2] 

  </onMessage> 

  <onAlarm> 

    [timer] 

    [T3] 

  </onAlarm> 

</if> 

a) BPMN Exclusive event-based gateway b) Corresponding BPEL code 

Figure 234. Mapping of the BPMN Exclusive event-based gateway into corresponding BPEL code 

A Parallel fork-join pattern with AND gateways is mapped directly to a BPEL <flow> activity, 

while the Sequence pattern is mapped directly to the BPEL <sequence> activity [89]. The <flow> 

activity is used to specify activities to be performed concurrently, while the <sequence> activity is used 

to define activites to be performed sequentially in lexical order. 

 Two types of loops are supported in BPEL, namely, while and repeat loops. A while loop 

structure in BPMN is mapped to a <while> BPEL activity (see Figure 235). The <while> activity is 

used in BPEL to define an activity that should be repeated while the defined <condition> evaluates to 

true. 
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<while>    

  <condition> 

    [e] 

  </condition> 

    [T1] 

</while> 

a) BPMN while loop structure b) Corresponding BPEL code 

Figure 235. Mapping of the BPMN while loop structure into corresponding BPEL code 

A BPMN repeat loop structure is mapped to a <repeatUntil> BPEL activity (see Figure 236). The 

<repeatUntil> activity is similar to the <while> activity, but in this case, the <condition> is tested 

after the execution of the inner activity. 

 

<repeatUntil>    

    [T1] 

  <condition> 

    [not e] 

  </condition> 

</while> 

a) BPMN repeat loop structure b) Corresponding BPEL code 

Figure 236. Mapping of the BPMN repeat loop structure into corresponding BPEL code 

Data 

 

The BPMN data objects are mapped directly to the BPEL <variable> construct, which is 

defined in <variables> section. Also, BPMN properties are mapped to BPEL variables [89]. The input 

set is mapped to a WSDL message defining the input of a BPEL activity, for a Send and Service tasks, 

while for a Receive task a single output is mapped to a WSDL message defining the output of the BPEL 

activity (maps message parts of WSDL message). These mappings are shown in Figure 237. 

 
<inputSet name=”iset”> 

  <dataInput name=”input”> 

    <structureDefinition 

structure=”type”/> 

  </dataInput> 

  ... 

</inputSet> 

 

<wsdl:message name=”iset-name”>    

  <part name=”[input-name]” 

type=”[type]”/> 

  ... 

</wsdl:message> 

<outputSet name=”oset”> 

  <dataOutput name=”output”> 

    <structureDefinition 

structure=”type”/> 

  </dataOutput> 

  ... 

</outputSet> 

 

<wsdl:message name=”oset-name”>    

  <part name=”[output-name]” 

type=”[type]”/> 

  ... 

</wsdl:message> 

a) BPMN input and output sets b) Corresponding BPEL code 

Figure 237. Mappings of the BPMN input and output sets into corresponding BPEL code 

Incoming Data associations for a Service task are mapped to a corresponding <toParts> of the 

<invoke> activity, while the outgoing Data associations are mapped to the corresponding <fromParts> 

of the same <invoke> activity. The <toParts> element is used to create a multi-part WSDL mesasge 

from BPEL variables (i.e., anonymous WSDL variable). Incoming Data associations for a Send task are 
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also mapped to the <toParts>. However, outgoing Data associations for a Receive task, are mapped to 

<fromParts> of the <receive> activity. The <fromParts> element is similar to the <toParts> element, 

but in this case <fromPart> element is used to retrieve data from an incoming WSDL message and to 

place it in to a BPEL variable. 
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Appendix B. Mapping rBPMN constructs to choreographies 

(BPEL4Chor) 
 

This mapping is organized in three main parts: generation of participant types in a participant 

topology; creation of participant references and participant sets; and generation of message links from 

the message flow. 

 

Participant types 
 

Each rBPMN pool is directly mapped to a participant type. In Figure 238, we show how a 

rBPMN participant (pool) is mapped to a corresponding BPEL4Chor participantType with the same 

name in the participantTypes section in a BPEL4Chor topology. 

 

 

<topology name="topo" 

     targetNamespace="[targetNamespace]" ...> 

   <participantTypes> 

      <participantType name = “Pool” .../> 

      ... 

   </participantTypes> 

   ... 

</topology> 

a) rBPMN pool b) Corresponding BPEL4Chor code 

Figure 238. Paticipant type in BPEL4Chor 

Participant references and participant sets 
 

Participant sets and references are used to represent instances of Participant types. As we 

described in section 3, we integrated these two concepts into one (Participant set). Therefore, we use 

Participant sets to represent one or more references for a given participant type, and in the case if the 

number of participants is not defined at design-time [24].  

If a pool is defined as a multi-instance pool, then such a pool is defined by a participantType and 

is referenced by a participantSet. However, if a pool is not defined as a multi-instance pool, then it is 

defined by a participantType, referenced by a Participant. Participant references and Participant sets 

can be associated with BPEL activities to define a participant role in a communication.  

In Figure 239, we have an association from a receiving message flow from Pool 1 to Participant 

set ps. The actual participant reference in the set is represented by the ps participant Set data object. The 

par1 participant reference contained in the set is one particular participant from the set of participants. 

 

 

<participantSet> 

   name=”ps” type=”Pool 1”> 

    <participant name=”par1”/> 

</participantSet> 

... 

a) Send message in rBPMN b) Corresponding BPEL4Chor code 

Figure 239. Storing participant reference in a Participant set 
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Generation of message links 
 

Message links are used to define which participants can communicate with other particular 

participants [24], where message links connect participants given in a topology.  

In Figure 240, Participant set ps is associated with a message flow, and the ps represents 

references which are passed over the message flow from one participant to another. The first 

messageLink, in Figure 240, contains the participantRefs attribute, and this attribute realize link passing 

mobility. If a message is sent from a multi-instance pool (participant), then the senders attribute is used 

in the description of a messageLink. In addition, if a bindSenderTo attribute is used in a messageLink, 

then this implies that the sender of the message must include a reference to herself in the message [24].  

 

<messageLink> 

   sender=”Pool 1” 

   receiver=”Pool 2” 

   participantRefs=”ps” 

   sendActivity=”Send”/> 

 

<messageLink> 

   sender=”Pool 2” 

   receiver=”Pool 3”    

   sendActivity=”Send 1”.../> 

... 

 

a) Send message with participant set 

in rBPMN 

b) Corresponding BPEL4Chor code 

Figure 240. Link passing mobility and message links 

In BPEL4Chor, the usage of partnerLink, portType, and operation attributes in communicating 

activities from BPEL are forbidden in BPEL4Chor, in order to abstract from WSDL artifacts. The 

communicating activities are defined by using the message links in a topology (as shown in the 

paragraph above).  

The participant grounding is mapping to the web-service specific configuration, in order to use 

the BPEL4Chor choreography on a specific platform. A message links are grounded to WSDL 

operations, and participant references are grounded to WSDL properties. The WSDL property defines 

where an element is located in a certain message type. By using these WSDL properties, BPEL process 

can extract the concrete service reference from the incoming message [24].  

A complete description of BPEL4Chor and its relation to BPEL can be found in [24][ 23]. 
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Appendix C. Use case models in the rBPMN editor 
 

 In this section we will show use case process models from section 5 done in the rBPMN editor. 

 

 
Figure 241. The on-line product order process in the rBPMN editor (from Figure 200) 
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Figure 242. Interconnected behavioral choreography diagram for the Flight request process in the 

rBPMN editor (from Figure 205) 
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Figure 243. rBPMN interaction choreography model for the flight request process in the rBPMN editor 

(from Figure 209) 
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Figure 244. The book buy request scenario in the rBPMN editor (from Figure 210) 
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Appendix D. rBPMN graphical concrete syntax for rules 
 

Graphical representation Metamodel element Constraints 

 

DerivationRule  

 

IntegrityRule  

 

ProductionRule  

 

ReactionRule  

  

ReferencePropertyAtom Association Condition: from 

ReferenceProperty to Rule.  

Association Conclusion: from Rule to 

ReferenceProperty. 

 

PropertyAtom Property Condition: from Property to 

Rule 

Property Conclusion: from Rule to 

Property 

 

ObjectClassificationAtom Classification Condition: from Class to 

Rule 
Classification Conclusion: from Rule to 

Class 

  

ObjectClassificationAtom Post Condition: from a ReactionRule or 

ProductionRule, to a Class. 

 

AssertActionExpression Assert Action: from a ReactionRule or 

ProductionRule, to a Class. 

 

RetractActionExpression Retract Action: from a ReactionRule or 

ProductionRule, to a Class. 

 

UpdateActionExpression Update Action: from a ReactionRule or 

ProductionRule, to a Class. 

 

InvokeActionExpression Invoke Action: from a ReactionRule or 

ProductionRule, to a Class. 

 

InvokeActionExpression Invoke Activity Action: from a 

ReactionRule or ProductionRule, to a 
ActionEventExpression. 

 

ActionEventExpression  
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AtomicEventExpression  

 
triggeringEventExpr  

 
triggeredEventExpr  

 

ChoiceEventExpression  

 

ParallelEventExpression  

 

SequenceEventExpression  

 

AndNotEventExpression  

 

MessageType  

 

OCLInvariant  

 

Class  

 

ReferenceProperty Class Association: from a Class to a Type. 

 

Datatype  
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EnumerationDatatype  

 


