
 
 

 UNIVERSITY OF BELGRADE 
 FACULTY OF ORGANIZATIONAL SCIENCES 

 

 

 

 

 

 

 
MILAN V. MILANOVIĹ 

 

 
 

MMOODDEELLIINNGG  RRUULLEE--DDRRIIVVEENN  SSEERRVVIICCEE  OORRIIEENNTTEEDD  

AARRCCHHIITTEECCTTUURREESS  
 

 

 

 
 PHD THESIS  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Belgrade, 2010.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 



 

 

SUPERVISED BY: 
 
 Dr Vladan Devedģiĺ, Professor 
 Faculty of Organizational Sciences, University of Belgrade, Serbia 
 
 
 
 
COMITTEE MEMBERS: 

 
Dr Dragan Djuriĺ, Assistant Professor 
Faculty of Organizational Sciences, University of Belgrade, Serbia 
 
Dr Siniġa Vlajiĺ, Assistant Professor 
Faculty of Organizational Sciences, University of Belgrade, Serbia 

 
Dr Dragan Gaġeviĺ, Associate Professor  
School of Computing and Information Systems, Athabasca University, Edmonton,  
Canada 

 

Dr Dragan Bojiĺ, Assistant Professor 
School of Electrical Engineering, University of Belgrade, Serbia 
 
 
 
 
 

Date of PhD thesis defence: __________________ 
 
Date of PhD thesis promotion: __________________ 
 

 

 



 

Modelovanje servisno orijentisanih arhitektura koriġĺenjem 
pravila 

 
Apstrakt: 

 
Ova doktorska disertacija je fokusirana na dizajniranje i implementacjiu jezika za modelovanje 

poslovnih procesa upotrebom pravila za servisno orijentisane arhitekture (SOA). Jezik je baziran na de 

facto standardu za modelovanje poslovnih procesa (tj. BPMN-u) i generalnom jeziku za definisanje 

pravila (R2ML-u). Postojeĺa reġenja u ovoj oblasti su pokazala da su procesno orijentisani modeli suviġe 

nefleksibilna za dinamiļku adaptaciju poslovne logike. Reġenja bazirana na pravilima daju alternativu, 

koja nudi veĺu fleksibilnost zahvaljujuĺi deklarativnoj prirodi pravila i njihovim algoritmima 

rezonovanja. MeĽutim, modelovanje poslovnih procesa koriġĺenjem pravila je zamoran proces za 

programere u odnosu na ukupno razumevanja poslovnih procesa. 

 U ovoj disertaciji je predloģen hibridni pristup, gde jezik za modelovanje ukljuļuje procesno 

orijentisanu, ali i na pravilima baziranu perspektivu. Jezik (na pravilima bazirani BPMN ï rBPMN) se 

koristi za modelovanje razliļitih tipova kompozicija servisno orijentisanih arhitektura, kao ġto su 

orkestracije i koreografije. Prethodna istraģivanje u domenu modelovanja orkestracija su pokazala da: i) 

dobre prakse za dijagrame toka nisu najbolje pokrivene u postojeĺim jezicima, ii) jezici za modelovanje 

poslovnih procesa imaju ograniļenu podrġku za reprezentaciju logiļkih izraza i pravila, iii) ograniļena je 

podrġka za dinamiļke promene delova poslovne logike u izvrġnim orkestracijama servisa, i iv) postoji 

potreba za metodologijom, koja bi dozvolila sistemsku upotrebu tri kljuļna aspekta koja doprinose 

modelovanju orkestracija servisa ï reļnici, pravila i procesi. Kako bi odgovorili na ove zahteve, u ovom 

radu se prelaģe metodologija za sistematsko definisanje koraka za proces razvoja servisno orijentisanih 

arhitektura. 

 Istraģivaļka zajednica je bila uglavnom fokusirana na problem modelovanja orkestracija servisa 

u domenu kompozicija servisa, dok je modelovanje koreografija zauzimalo manje mesta u tim 

istraģivanjima. Sledeĺi zahtevi u domenu modelovanja koreografija su analizirani u ovoj disertaciji: i) 

modeli koreografija nisu dobro spojeni sa reļnicima modela, ii) ograniļena je podrġka za razdvajanje 

delova poslovne logike od modela koreografija. Ovo smanje moguĺnost dinamiļkih promena u 

koreografijama, iii) modeli koreografija sadrģe suviġne elemente deljene poslovne logike, ġto moģe 

voditi ka nekonzistetnosti implementacije i nekompatibilnom ponaġanju. 

 Kako bi evaluirali rBPMN jezik u odnosu na razliļite vrste kompozicija servisa i kako bi 

uporedili dato reġenje sa postojeĺim reġenjima, dali smo pregled uzora kod razmene poruke, uzora za 

interakciju servisa i uzora za kontrolu toka kod modela orkestracije, kao i agilnih uzora kako bi 

evaluirali dinamiļnost naġeg reġenja. TakoĽe smo pokazali kako se razvijeni jezik moģe koristiti u 

razliļitim studijama sluļajeva koriġĺenja za modelovanje realnih poslovnih procesa. 

 TakoĽe smo razvili softversko okruģenje bazirano na Eclipse platformi, pod nazivom rBPMN 

editor, koje ukljuļuje implementaciju rBPMN jezika, kao i grafiļki editor za definisanje na pravilima 

baziranim poslovnih prosela u rBPMN jeziku. Pored opisa dizajna i implementacije razvijenog 

softverskog reġenja, ova disertacija pruģa i komparativnu analizu rBPMN jezika sa drugim jezicima u 

oblasti modelovanja poslovnih procesa.  

 

  
 

 

Kljuļne reļi: 
 

Poslovni procesi, poslovna pravila, Meta-modeli, BPMN, R2ML, rBPMN, metodologija



 

 

Modeling rule-driven Service Oriented Architectures 
 
Abstract: 
 

This PhD thesis is focused on the design and implementation of a novel rule-based business process 

language for modeling Service Oriented Architectures (SOA). The proposed language is built on a de 

facto standard for process modeling (i.e., BPMN) and a general rule markup language (R2ML). The 

existing solutions to this topic demonstrated that process-oriented models might be too rigid for 

dynamic adaptations of the business logic. Rule-based approaches are considered an alternative, which 

offers more flexibility thanks to the declarative nature of rules and their underlying reasoning 

algorithms. However, modeling a business process through rules is a tedious process for developers in 

terms of the overall business process comprehension. 

 In this thesis, we propose a modeling language that integrates both rule- and process-oriented 

modeling perspectives of a business process. The language (rule-based BPMN ï rBPMN) is used to 

model different types of SOA compositions, including orchestrations and choreographies. Regarding 

the orchestrations, the previous research on business process modeling of service orchestrations, 

demonstrated that: i) best practices for workflows are not fully covered in the existing languages; ii) 

business process languages have limited support for representing logical expressions and rules; iii) there 

is a limited support for dynamic changes of parts of business logic in executable service orchestrations; 

and iv) there is a need for a methodology, which allows for systematic use of the three key aspects 

contributing to the modeling of service orchestrations ï business vocabularies, rules, and processes. In 

order to address these challenges, in addition to the rBPMN language, in this thesis, we propose a 

methodology for defining a systematic set of steps for the development process of service oriented 

architectures. 

The research community has so far mainly focused on the problem of modeling of service 

orchestrations in the domain of service composition, while modeling of service choreographies has 

attracted less attention. The following identified challenges in choreography modeling are tackled in 

this thesis: i) choreography models are not well-connected with the underlying business vocabulary 

models. ii)  there is limited support for decoupling parts of business logic from complete choreography 

models. This reduces dynamic changes of choreographies; iii)  choreography models contain redundant 

elements of shared business logic, which might lead to an inconsistent implementation and incompatible 

behavior.  

In order to evaluate the rBPMN language for different service compositions and to compare our 

approach with related solutions, we leverage message exchange patterns, service-interaction patterns for 

choreography models, control flow patterns for orchestration models, and agility patterns for evaluation 

of dynamicity of business processes. In addition, we show how the developed language can be used in 

different case studies to model real world business processes. 

To have a proof of concept, we developed a software environment based on Eclipse, called rBPMN 

Editor, which includes implementation of the rBPMN language and also a graphical editor for defining 

rule-based business processes in the rBPMN language. Along with the description of the design and 

implementation of the developed software environment, the thesis provides a comparative analysis of 

the rBPMN language with other similar languages in the area of modeling business processes.  
 

 
 
 
Keywords: 
 

Business processes, Business rules, Meta-models, Model-Driven Engineering, BPMN, R2ML, rBPMN, 

methodology 



 

CCOONN TTEENN TTSS  

 
 

1. INTRODUCTION  .................................................................................................................................................... 1 

1.1. RESEARCH GOALS .............................................................................................................................................. 2 
1.2. CONTENTS PER CHAPTER .................................................................................................................................... 3 

2. LITERATURE REVIEW  ........................................................................................................................................ 5 

2.1. MODEL DRIVEN ENGINEERING ........................................................................................................................... 5 
2.1.1. Definitions of model and modeling ................................................................................................................ 5 
2.1.2. Modeling principles ...................................................................................................................................... 6 
2.1.3. Meta-models and meta-modeling .................................................................................................................. 6 
2.1.4. Meta-modeling architecture .......................................................................................................................... 8 
2.1.5. Model Driven Architecture ......................................................................................................................... 10 

2.1.5.1. Meta-Object Facility (MOF) .............................................................................................................................. 12 
2.1.5.2. Unified Modeling Language (UML) .................................................................................................................. 13 

2.1.5.2.1. UML Profiles ............................................................................................................................................... 13 
2.1.5.3. XML Metadata Interchange (XMI) .................................................................................................................... 14 
2.1.5.4. Object Constraint Language (OCL) .................................................................................................................... 15 
2.1.5.5. Eclipse Modeling Framework (EMF) ................................................................................................................. 16 

2.1.5.5.1. Basic concepts of the Eclipse Modeling Framework ...................................................................................... 16 
2.1.5.5.2. ECore modeling concepts ............................................................................................................................. 17 

2.1.5.6. Graphical Modeling Framework (GMF) ............................................................................................................. 20 
2.2. SERVICE COMPOSITIONS ................................................................................................................................... 22 

2.2.1. Web services .............................................................................................................................................. 22 
2.2.2. Process orchestrations - WS-BPEL ............................................................................................................. 24 
2.2.3. Process choreographies - WS-CDL ............................................................................................................. 25 
2.2.4. Process choreographies ï BPEL4Chor ....................................................................................................... 28 

2.3. BUSINESS PROCESSES ....................................................................................................................................... 29 
2.3.1. Concepts and terminology .......................................................................................................................... 29 
2.3.2. Business Process flexibility and variability.................................................................................................. 30 
2.3.3. Business Process Modeling Languages (BPML) .......................................................................................... 30 

2.3.3.1. Petri nets ........................................................................................................................................................... 31 
2.3.3.2. Event Driven Process Chain (EPC) .................................................................................................................... 31 
2.3.3.3. Integrated DEFinition Method 3 (IDEF3) ........................................................................................................... 34 
2.3.3.4. UML 2.0 Activity Diagrams (AD) ..................................................................................................................... 36 
2.3.3.5. Agent Object-Relationship Modeling Language (AORML) ................................................................................ 38 
2.3.3.6. Letôs Dance ....................................................................................................................................................... 40 
2.3.3.7. iBPMN ............................................................................................................................................................. 42 
2.3.3.8. Business Process Modeling Notation (BPMN).................................................................................................... 43 

2.3.3.8.1. BPMN Language: Graphical Concrete Syntax ............................................................................................... 43 
2.3.3.8.1.1. Events ................................................................................................................................................... 43 
2.3.3.8.1.2. Activities ............................................................................................................................................... 45 
2.3.3.8.1.3. Gateways ............................................................................................................................................... 45 
2.3.3.8.1.4. Connecting objects ................................................................................................................................. 45 
2.3.3.8.1.5. Swimlanes ............................................................................................................................................. 45 
2.3.3.8.1.6. Artifacts ................................................................................................................................................ 46 

2.3.3.8.2. BPMN Metamodel: Abstract Syntax ............................................................................................................. 47 
2.3.3.8.2.1. Choosing BPMN metamodel for BPMN language................................................................................... 48 
2.3.3.8.2.2. BPMN metamodel ................................................................................................................................. 50 

2.3.3.9. Business Process Modeling Languages Summary ............................................................................................... 59 
2.4. BUSINESS RULES .............................................................................................................................................. 61 

2.4.1. Business rules concepts .............................................................................................................................. 61 
2.4.2. Business rule languages.............................................................................................................................. 62 
2.4.3. REWERSE I1 Rule Markup Language (R2ML) Language ............................................................................ 63 

2.4.3.1. R2ML Metamodel and concrete XML-based syntax ........................................................................................... 63 
2.4.3.1.1. Integrity rules ............................................................................................................................................... 64 
2.4.3.1.2. Derivation rules ............................................................................................................................................ 65 
2.4.3.1.3. Production rules ........................................................................................................................................... 66 
2.4.3.1.4. Reaction rules .............................................................................................................................................. 67 
2.4.3.1.5. R2ML Vocabulary........................................................................................................................................ 69 

2.4.3.1.5.1. Objects, Data, Variables ......................................................................................................................... 70 



 

 

2.4.3.1.5.2. Atoms ................................................................................................................................................... 73 
2.4.3.1.5.3. Formulas ............................................................................................................................................... 76 
2.4.3.1.5.4. Actions .................................................................................................................................................. 77 

2.4.3.2. UML-Based Rule Modeling Language (URML) ................................................................................................. 79 
2.4.3.2.1. URML graphical notation ............................................................................................................................. 79 
2.4.3.2.2. Modeling reaction rules ................................................................................................................................ 80 
2.4.3.2.3. Modeling derivation rules ............................................................................................................................. 81 
2.4.3.2.4. Modeling production rules ............................................................................................................................ 81 

2.4.3.3. Policy Modeling Language (PML) ..................................................................................................................... 81 
2.4.3.3.1. Policy Modeling Language Metamodel ......................................................................................................... 82 
2.4.3.3.2. Policy UML Profile ...................................................................................................................................... 83 

2.5. INTEGRATION OF BUSINESS RULES AND BUSINESS PROCESSES ............................................................................ 85 

3. RULE-ENHANCED BUSINESS PROCESS MODELING LANGU AGE AND METHODOLOGY  .................. 90 

3.1. RBPMN GRAPHICAL CONCRETE SYNTAX  .......................................................................................................... 91 
3.1.1. Vocabulary in rBPMN ................................................................................................................................ 92 
3.1.2. Integration of R2ML rules and rBPMN rule gateways ................................................................................. 93 

3.1.2.1. Integration of integrity rules and the rule gateways ............................................................................................. 93 
3.1.2.2. Integration of derivation rules and the rule gateway ............................................................................................ 94 
3.1.2.3. Integration of production rules and the rule gateway ........................................................................................... 96 
3.1.2.4. Integration of reaction rules and the rule gateway ............................................................................................... 97 
3.1.2.5. Integration of PML policies in rBPMN language .............................................................................................. 100 

3.1.3. Extension of Conditional Event Definition (rule event) .............................................................................. 101 
3.1.4. Extensions for choreography modeling ..................................................................................................... 103 

3.2. DESCRIPTION OF THE RBPMN METAMODEL .................................................................................................... 105 
3.2.1. Well-formedness Rules.............................................................................................................................. 112 

3.3. INTEGRATED METHODOLOGY FOR DEVELOPMENT OF RULE-DRIVEN SOAS ....................................................... 114 
3.3.1. Business process design ............................................................................................................................ 115 
3.3.2. Identification of variable segments in a process ........................................................................................ 115 
3.3.3. Identification of appropriate software patterns .......................................................................................... 116 
3.3.4. Data design .............................................................................................................................................. 118 
3.3.5. Rule and policy design .............................................................................................................................. 118 

3.4. MAPPING OF RBPMN TO SERVICE EXECUTION LANGUAGE ............................................................................... 119 
3.4.1. Mapping rBPMN constructs to orchestrations (WS-BPEL) ........................................................................ 119 

3.4.1.1. Integration of rules into BPEL ......................................................................................................................... 119 
3.4.2. Mapping rBPMN constructs to choreographies (BPEL4Chor) ................................................................... 121 
3.4.3. Architecture for integration of rules into BPEL ......................................................................................... 121 

4. MODELING SERVICE AND  PROCESS PATTERNS IN THE RBPMN LANGUAGE  .................................. 124 

4.1. REPRESENTATION OF MESSAGE EXCHANGE PATTERNS IN RBPMN .................................................................. 124 
4.1.1. WSDL 2.0 In-Bound MEPs ....................................................................................................................... 125 

4.1.1.1. In-Only ........................................................................................................................................................... 125 
4.1.1.2. Robust In-Only................................................................................................................................................ 127 
4.1.1.3. In-Out ............................................................................................................................................................. 129 
4.1.1.4. In-Optional-Out............................................................................................................................................... 132 

4.1.2. WSDL 2.0 Out-Bound MEPs ..................................................................................................................... 133 
4.1.2.1. Out-Only......................................................................................................................................................... 134 
4.1.2.2. Robust Out-Only ............................................................................................................................................. 135 
4.1.2.3. Out-In ............................................................................................................................................................. 136 
4.1.2.4. Out-Optional-In............................................................................................................................................... 138 

4.2. INTERACTION MODELING IN RBPMN .............................................................................................................. 140 
4.2.1. Single-transmission Bilateral Interaction Patterns .................................................................................... 140 

4.2.1.1. Send ............................................................................................................................................................... 140 
4.2.1.2. Receive ........................................................................................................................................................... 142 
4.2.1.3. Send/Receive .................................................................................................................................................. 143 

4.2.2. Single-Transmission Multilateral Interaction Patterns .............................................................................. 144 
4.2.2.1. Racing Incoming Messages.............................................................................................................................. 145 
4.2.2.2. One to Many Send ........................................................................................................................................... 146 
4.2.2.3. One from Many Receive .................................................................................................................................. 148 
4.2.2.4. One to Many Send/Receive .............................................................................................................................. 149 

4.2.3. Multi-transmission interaction patterns ..................................................................................................... 151 
4.2.3.1. Multi -responses ............................................................................................................................................... 151 
4.2.3.2. Contingent requests ......................................................................................................................................... 153 

4.2.4. Routing patterns ....................................................................................................................................... 155 



 

4.2.4.1. Request with referral ....................................................................................................................................... 155 
4.2.4.2. Relayed Request .............................................................................................................................................. 157 
4.2.4.3. Dynamic Routing ............................................................................................................................................ 160 

4.2.5. Mappings between rBPMN interconnection and interaction models........................................................... 162 
4.3. MODELING CONTROL FLOW IN RBPMN .......................................................................................................... 166 

4.3.1. Basic Control Flow Patterns ..................................................................................................................... 166 
4.3.1.1. The ñSequenceò Pattern ................................................................................................................................... 167 
4.3.1.2. The ñParallel Splitò Pattern .............................................................................................................................. 167 
4.3.1.3. The ñSynchronizationò Pattern ......................................................................................................................... 168 
4.3.1.4. The ñExclusive Choiceò Pattern ....................................................................................................................... 169 
4.3.1.5. The ñSimple mergeò Pattern ............................................................................................................................ 170 

4.3.2. Advanced Branching and Synchronization Patterns................................................................................... 171 
4.3.2.1. The ñMultiple Choiceò Pattern ......................................................................................................................... 171 
4.3.2.2. The ñStructured Synchronizing Mergeò Pattern ................................................................................................ 172 
4.3.2.3. The ñMultiple Mergeò Pattern .......................................................................................................................... 173 
4.3.2.4. The ñDiscriminatorò Pattern ............................................................................................................................ 173 

4.3.3. Structural Patterns ................................................................................................................................... 174 
4.3.3.1. The ñArbitrary Cyclesò Pattern ........................................................................................................................ 174 
4.3.3.2. The ñImplicit Terminationò Pattern .................................................................................................................. 175 
4.3.3.3. The ñN out of M joinò Pattern .......................................................................................................................... 176 

4.3.4. Multiple Instance Patterns ........................................................................................................................ 176 
4.3.4.1. The ñMultiple Instances without Synchronizationò pattern ................................................................................ 177 
4.3.4.2. The ñMultiple Instances with a Priori Known Design Time Knowledgeò pattern ............................................... 178 
4.3.4.3. The ñMultiple Instances with a Priori Known Runtime Knowledgeò Pattern ...................................................... 180 
4.3.4.4. The ñMultiple Instances with no a Priori Runtime Knowledgeò Pattern ............................................................. 181 

4.3.5. State-based Patterns ................................................................................................................................. 182 
4.3.5.1. The ñDeferred Choiceò Pattern ........................................................................................................................ 182 
4.3.5.2. The ñMilestoneò Pattern .................................................................................................................................. 183 

4.3.6. Cancellation Patterns ............................................................................................................................... 184 
4.3.6.1. The ñCancel Activityò Pattern .......................................................................................................................... 184 
4.3.6.2. The ñCancel Caseò Pattern ............................................................................................................................... 185 

4.4. BUSINESS RULES PATTERNS FOR AGILE BUSINESS PROCESSES ........................................................................... 186 
4.4.1. Control Flow Decisions ............................................................................................................................ 187 

4.4.1.1. The ñDecision Logic Abstractionò pattern ........................................................................................................ 187 
4.4.1.2. The ñDecision Node to Business Rule Bindingò pattern .................................................................................... 188 
4.4.1.3. The ñDecision with flexible input dataò pattern ................................................................................................ 189 
4.4.1.4. The ñDecision flexible outputò pattern ............................................................................................................. 190 

4.4.2. Data Constraints ...................................................................................................................................... 191 
4.4.2.1. The ñConstraints at predefined checkpointò pattern .......................................................................................... 191 
4.4.2.2. The ñConstraints at multiple checkpointsò pattern............................................................................................. 192 
4.4.2.3. The ñConstraints enforced by external Data Contextò pattern ............................................................................ 193 

4.4.3. Dynamic Business Process Composition ................................................................................................... 194 
4.4.3.1. The ñBusiness rule-based subprocess selectionò pattern .................................................................................... 194 
4.4.3.2. The ñBusiness Rule based Process Compositionò Pattern .................................................................................. 195 

5. IMPLEMENTATION OF TH E RBPMN LANGUAGE AND  CASE STUDIES ................................................ 197 

5.1. MODELING SERVICE ORCHESTRATIONS IN RBPMN LANGUAGE ........................................................................ 197 
5.2. MODELING CHOREOGRAPHIES IN RPBMN LANGUAGE ..................................................................................... 204 
5.3. MODELING AGILE BUSINESS PROCESSES IN THE RBPMN LANGUAGE .............................................................. 210 
5.4. RBPMN LANGUAGE IMPLEMENTATION: THE RBPMN EDITOR ........................................................................ 218 

6. ANALYSIS OF THE PROPOSED SOLUTION ................................................................................................. 227 

6.1. COMPARISON OF BUSINESS PROCESS MODELING LANGUGES FOR BASIC CONTROL FLOW PATTERNS ................ 227 
6.2. COMPARISON OF LANGUAGES USED FOR MODELING OF SERVICE INTERACTION PATTERNS .............................. 229 
6.3. ANALYSIS OF RBPMN USAGE FOR MODELING AGILITY PATTERNS .................................................................... 231 

7. CONCLUSION .................................................................................................................................................... 233 

7.1. ACHIEVED CONTRIBUTIONS ............................................................................................................................ 233 
7.2. USAGE DOMAIN ............................................................................................................................................. 234 
7.3. FURTHER WORK AND RESEARCH DIRECTIONS .................................................................................................. 235 

8. LITERATURE  ..................................................................................................................................................... 236 

APPENDIX A. BASIC MAPPINGS BETWE EN BPMN AND WS-BPEL .................................................................. 246 



 

 

Process and Activities .......................................................................................................................................................... 246 
Events ................................................................................................................................................................................. 248 
Gateways ............................................................................................................................................................................ 248 
Data .................................................................................................................................................................................... 250 

APPENDIX B. MAPPING RBPMN CONSTRUCTS TO CHOREOGRAPHIES (BPEL 4CHOR) ............................ 252 

Participant types .................................................................................................................................................... 252 
Participant references and participant sets ............................................................................................................. 252 
Generation of message links ................................................................................................................................... 253 

APPENDIX C. USE CASE MODELS IN THE RBPMN EDITOR ............................................................................. 254 

APPENDIX D. RBPMN GRAPHICAL CONCRETE SYN TAX FOR RULES .......................................................... 258 

 

 

 

 

 

 

 

 

 

 





PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

1 

 

1.  Introduction  
 

Service-oriented architecture (SOA) is a software paradigm for building flexible and loosely coupled 

software systems based on services. Services are software entities that can be easily discovered, 

published and described. SOA approach to creation of software sysetms enables assembling 

applications independent of specific platform by discovering and calling services to accomplish certain 

task. The main idea behind SOAs is that ñinstead of building or buying monolithic software systems, in 

which the business logic is hard-coded, applications should be composed in a flexible way, using well-

defined software services that may be distributed over the Internetò [48]. SOA enables lightweight 

approach to the collaboration among different organizations by exposing their internal operations as 

services. In the context of SOAs, service providers expose their services by using service brokers 

(contains directory of services), and those services can be found by service requesters. Web services 

represent the most-promising architecture for implementation of SOA paradigm by using the Internet as 

communication medium and some well-known protocols, including the Simple Object Access Protocol 

(SOAP) [134] for transmitting data, the Web Services Description Language (WSDL) [136] for 

defining services, and the Business Process Execution Language for Web Services (BPEL4WS) [49] for 

orchestrating services and Web Services Choreography Description Language (WS-CDL) [55] for 

defining services choreographies. Web services are ñself-describing, open components that support 

rapid, low-cost composition of distributed applicationsò [99]. Web services can be composed in entities 

that support automated execution of business processes (called service compositions). A typical 

modeling language for representing these processes is the Business Process Modeling Notation ï 

BPMN [88].  

In this context, Model-Driven Engineering [9] [34] paradigm is of great relevance, as service 

compositions can be represented as software models, where such service compositions are used for 

realization of composite applications in service-oriented enterprise computing environments. Since a 

business process can be realized through a composition of services, processes of this kind are also 

called service compositions. However, current solutions to modeling SOA compositions have some 

serious drawbacks [99], such as: i) inability to abstract the business logic at the problem domain level, 

so that changes of the (parts of) business logic do not trigger the change of overall process composition; 

ii) support of the modeling of  complex service compositions where one should be able to define rules 

of interaction between multiple business process end points in a unique way; and iii) increased 

flexibility and adaptivity of business processes realized as SOAs by isolating variable parts from the 

reusable parts of a business process and by combining the reusable parts with business rules that model 

the variables parts.  

On the other hand, we have Business process management which ñincludes concepts, methods, and 

techniques to support the design, administration, configuration, enactment, and analysis of business 

processesò [146]. Thus, a business process consists of a set of activities that are performed in 

coordination in an organizational and technical environment. These activities jointly realize some 

business goals. Each business process is enacted by a single organization, but it may interact with 

business processes performed by other organizations [146]. Business processes are represented by 

business process models, where following MDE principles, models are expressed with modeling 

languages, which are defined by metamodels that are associated with notations of the modeling 

languages, often of a graphical nature. A variety of modeling languages exists for the specification of 

process models, and they can be classified according to their focal modeling construct, according to 

[151]: i) Activity-centered; processes as a network of tasks or activities; ii) Process object centered; 

processes as the legal sequence of state changes of the process object; and iii) Resource centered; 

process as a network of processing stations that interact with each other. Process languages appear as 

Graph-based languages (e.g. BPMN), Net-based languages (e.g. Petri-nets, flow nets) and Workflow 

Programming Languages (e.g. BPEL). So, SOAs which are usually built with services as loosely-

coupled computing tasks communicating over the Internet/network can be represented with Resource-



Milan Milanoviĺ 

 

 

2 

 

centered languages, such as BPMN [88], which represent today de-facto standard for representing 

business processes.  

Recent research [108] has identified a lack of explicit formalism in the process modeling languages 

for capturing business rules. The key idea is to extract business logic contained implicitly in business 

process models into explicit definitions of business rules. This should enable for improving business 

agility, so that business processes can cope with the dynamic nature of business changes, and to 

accommodate dynamic logic of many different applications. This allows for the specification of 

business knowledge in a way that is understandable by business users, and at the same time 

understandable by technical users and executable by rule engines, and thus, bridging the gap between 

business and technology [30]. The approach which hard codes some business logic within applications 

cannot accommodate rapid and frequent changes of a business process without a heavy burden in terms 

of time and cost. Web services and business rules are complementary technologies that provide a good 

approach to bridge such a gap. When these two approaches are deployed in combination, applications 

gain strengths in ways that enhance business agility. The "loosely-coupled" approach of Web 

services/SOA, together with the "de-coupled" approach of business rules enables applications to better 

represent business logic in "explicit" format that can be more flexible and easily modified and shared 

across many applications. 

 

1.1.  Research goals  
 

From this we define research problem for this thesis and that is how to enable synergy between 

business rules language and a business processes languages for modeling SOAs in order to achieve 

agile SOAs (run-time change of a business process). Based on the research problem we define goals of 

this thesis, and that is development of a methodology, language and software development environment 

for modeling SOAs that enable for the synergetic usage of rule and process languages. Also, this 

language and the software development environment, which will support the language, will be used as a 

research instrument of the given research problem, and in the software development environment we 

will evaluate our research goals. Therefore, research objectives of this integration and also this thesis 

are: 

¶ Defining  a methodology and a modeling language for developing rule-driven (agile) 

business processes and SOAs; 

¶ Integrating of business rules and vocabularies with business process models used as designs 

of SOAs; 

¶ Facilitating dynamic changes of a business process execution flow by making rules first-

class citizens in business process modeling due to their declarative rule nature; 

¶ Extracting service compositions from rule-based business process models to make those 

process models executable; 

¶ Translating  business rules defined by domain experts into a formal representation suitable to 

be used by service engineers; 

¶ Deploying rule- and vocabulary enhanced process models onto rule and service composition 

engines; 

¶ Defining conditions for interaction execution and constraints in those interactions. 

 

In order to achieve the abovementioned goals, we defined a research methodology in this thesis, which 

included the following activities: 

¶ Reviewing and analyzing the literature about the state-of-the-art in the areas of SOA, business 

rules, and business process modeling in order to identify research gaps and position the 

contribution of this work; 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

3 

 

¶ Design and development of a development methodology for defining rule-based business 

processes and SOAs; 

¶ Design of a modeling language and a software development environment for modeling rule-

based business processes and SOAs; 

¶ Evaluation of the modeling language with respect to its capability to model common problems 

in the relevant area (i.e., through workflow, message exchange, and service interaction patterns) 

and by using a realistic case study. 

1.2.  Contents per chapter  
 

This thesis consists from seven chapters and a literature section. After the Introducion section, we 

given the overview of the MDE concepts and related techgooglenologies (MOF, UML, QVT, ...). In 

addition, we described Eclipse Modeling Framework and Graphical Modeling Framework. We also 

introduced business process languages, as well as the modeling and technological spaces. After that we 

given a description of the existing rule and policy modeling languages, their usage in Service-Oriented 

Architectures and modeling rules and policies, as well as for the development of Service-Oriented 

Architectures by using MDE principles that integrates rules and policies. We gave a review of current 

Service-Oriented Architectures and Web services, and analysis of integration between business 

processes and rules. 

 In the third chapter, we give a proposal for a rBPMN language concrete graphical syntax, which 

includes the integration of certaion BPMN elements (such as gateway) and different types of business 

rules (reaction, production, derivation and integrity rules). This includes a proposal for extensions of 

BPMN for modeling choreographies, with a reference to the common problems in choreography 

modeling in BPMN, as well as integration of PML policies in processes by using the appropriate 

metamodel. Besides the graphical synax we gave a proposal for the rBPMN language metamodel in 

MDE architecture. In addition, we give the integrated methodology for development of secure Service-

Oriented Architectures, by using rBPMN models of business process with integration of rules (R2ML) 

and policies (PML) in order to support different aspects of these architectures. In addition, we gave a 

complete proposal for designing business processes, data and rules. We also showed a support for 

modeling policies in a process of development of Service-Oriented Architectures (service compositions) 

by using modeling and PML language. In proposed methodology we gave detailed steps that should be 

followed during the development of rule-based business processes.  

The fourth chapter provides a detailed evaluation of rBPMN language through modeling of the 

four major types of service composition patterns. We gave a review of the Message Exchange patterns 

(MEPôs), control flow patterns, interaction patterns and patterns for the agile business processes. 

Through these patterns we showed expressivity of rBPMN language for modeling various parts of 

business processes through integration with rules. All patterns were analyzed based on the possibility of 

their modeling by using rBPMN language. In this chapter we gave mapping between two types of 

process models in rBPMN language, interaction models and interconnection models. 

The fifth chapter describes the case studies for rBPMN language through several scenarios of 

Service-Oriented Architecture usage, i.e., service composition models. However, the possibilites of this 

language are not limited only to the described scenarios, but it is possible to model all of the patterns 

from the chapter five. Specifically, in this chapter we showed orchestration modeling on the example of 

the on-line product order, we also gave an example of choreography modeling in the process of the 

flight request and an example of modeling agile business processes in rBPMN through book buying 

over the Internet. This chapter also show an implementation of the application for modeling rBPMN-

based processes, called rBPMN editor. 

 The sixth chapter gives overall description of rBPMN language evaluation based on patterns 

given in the chapter five. In this chapter we gave a comparative analysies of existing languages for 

interaction modeling patterns, control flow patterns and agility patterns, through the analysis to improve 



Milan Milanoviĺ 

 

 

4 

 

modeling of these patterns by using the rBPMN language. We also gave a review of modeling various 

aspects in rBPMN, constraints in modeling by using standard BPMN, as well as possibiliteis for 

modeing these patterns by using rules. 

The last chapter gives a critical review of the results achieved during the research described in 

this thesis. It discusses in detail the scientific, techical and practical contributions achieved in this study. 

After that, we gave an analysis of possibilities of practical application of the results of this study. In the 

end, we gave a plan for possible future research. 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

5 

 

2.  Literature Review  
 

This chapter surveys the state of the art in the relevant areas and introduces background knowledge that 

is important for understanding the concepts described in the rest of this thesis. In addition, this chapter 

describes business process modeling, rule languages, and the principles of model Driven Engineering. 

 

2.1.  Model Driven Engineering  
 

Model Driven Engineering is not Model Driven Architecture [34]. MDA is an OMG standard and is 

a specific version of the MDE approach. Favre defines MDE as an open and integrative approach to 

software development which involves many technological spaces (TS) [66] in a uniform way, and 

MDA is only one instance of MDE implemented in a series of technologies defined by the OMG (MOF, 

UML, XMI).  

MDA introduces a set of basic concepts, such as model, meta-model, modeling language and 

transformation, and recommends categorization of all models to platform-independent models (PIMs) 

and platform-specific models (PSMs). However, MDA is not a software development process.  

A technological space is defined as a working context with a set of associated concepts, body of 

knowledge, tools, required skills, and possibilities [66]. It is often associated with a given user 

community with shared expertise, educational support, common literature and even workshop and 

conference meetings. Examples of technological spaces are MDA and MOF, but also Grammarware 

[58] and BNF, Documentware and XML, Dataware and SQL, Modelware and UML, etc. 

 An important aspect of MDE is that it bridges different technological spaces and integrates 

knowledge from different research communities. In every space, model, meta-model and transformation 

concepts appear at various levels of abstraction and in a way can conform to certain concepts in another 

technical space. For example, what is called a meta-model in Modelware, conforms to something that is 

called a schema in Documentware, or grammar in Grammarware, etc. In [57], MDE is defined starting 

from MDA by adding assignment in a process of software development and a space for model 

organization. Two illustrative examples of the MDE process can be found in [1] and [10]. 

 

2.1.1.  Definitions of model and modeling  
 

The origin of the word model can be traced to the Latin modulus, which means a small measure. 

A definition of model from [123] says that: "a model is a representation of a concept. The 

representation is purposeful: the model purpose is used to abstract from the reality the irrelevant 

details". Miller and Mukerji state that "A model of a system is a description or specification of that 

system and its environment for some purpose. A model is often presented as a combination of drawings 

and text. The text may be in a modeling language or in a natural language" [85].  

 Computer science uses models in several phases of software development. MDA and MDE rely 

on modeling and models as their basic concepts. However, there is no single definition of model that is 

widely accepted in all computer science. Seidewitz defines model as ña set of statements about a system 

under studyò [121], and [68] defines model as an "abstraction of (real or language-based) system 

allowing predictions or inferences to be made". There are a number of other definitions, presented in 

[67]. This thesis uses the following definition of model: "A model represents a part of the reality called 

the object system, and is expressed in a modeling language. A model provides knowledge for a certain 

purpose that can be interpreted in terms of the object system" [67].  

 Models usually serve as specifications in traditional engineering disciplines. When software is 

constructed, models can be used as specifications as well. A UML model can be used for describing an 

existing software system (its structure and operations).  

Model interpretation means mapping model elements to the elements of the object system 

(system under study), so that a specific value of each model expression is obtained in the object system 



Milan Milanoviĺ 

 

 

6 

 

which is under study (with a certain level of accuracy). Thus, a model interpretation gives a model a 

meaning associated with the object system.  

Modeling languages enable to write expressions with elements in models of classes systems 

under study. A working software system can be based on a model that represents a certain part of 

reality, while the software itself can be regarded as a model. 

 

2.1.2.  Modeling principles  
 

In the world of software engineering, modeling has a rich tradition that reaches early days of 

programming. More recent efforts are focused on modeling languages and tools that permit users to 

express the system parameters to software architects and programmers, in a way that can be uniquely 

mapped to a concrete programming language and then compiled for a specific operating system. UML 

[96] is currently the most widely accepted language for visual specification of models, which is adopted 

as the de facto industry standard for software modeling and standardized by the Object Management 

Group (OMG). UML enables development teams to describe important characteristics of systems in 

appropriate models. Transformations between these models are usually accomplished manually, 

although there are tools that can do automatic model transformation [81]. 

A model is used for an indirect study of reality (i.e., of an object system) [67]. Various reasons 

may cause this indirectness. The object system may be inaccessible, or its direct study is too expensive, 

or even the object system may not exist yet. In all such cases, the model plays the role of a specification 

of the object system. Regardless of the reasons for indirectness, the model must be a valid 

representation of the object system. The knowledge acquired from the model must hold for the object 

system. Often, this knowledge is not exact but only approximates the reality, with an acceptable degree 

of inaccuracy. Furthermore, the knowledge acquired from the model is initially expressed in terms of 

model elements. This knowledge must be interpreted and converted to knowledge in terms of the object 

system. The relation between a model and an object system is bi-directional and two separate relations 

may be considered, as Figure 1 shows. This figure is called the DDI account (DDI ï Denotation, 

Demonstration, Interpretation), and was first introduced in [47]. 

 

 
Figure 1. Relationships between an object system and its model [47] 

The object system is denoted (represented) in a model. This denotation must preserve some 

characteristics of the object system to allow acquiring knowledge about it through the model. The 

model is used to obtain claims about the model elements. This process is known as demonstration. It 

happens only in the context of the model. Finally, the obtained results are mapped to the object system. 

This mapping is called interpretation. The knowledge obtained from the model must be verifiable 

against the object system. If the results obtained from the model do not meet the empirical evidence 

obtained from the reality, then the model is invalid with respect to the object system. 

Literature usually depicts only one relation between a model and its object system. Various names 

for the relation are used: ModelOf, RepresentationOf, RepresentedIn, ModeledBy, etc. ModelOf relation 

will be used in the remaining part of the thesis, because it accumulates two other relations: Denotation 

and Interpretation. 

 

2.1.3.  Meta - models and meta -modeling  
 

As the name suggests, meta-modeling is a modeling activity. Similarly, the product of meta-



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

7 

 

modeling, called a meta-model, is a model. If an entity is a model, we have to be able to clearly identify 

its object system. A meta-model is a model of the conceptual foundation of a language, consisting of a 

set of basic concepts, and a set of rules determining the set of possible models denotable in that 

language [33]. Therefore, a meta-model describes what models in that language can express. Based on 

this, we can conclude that a meta-model is a model of models expressed in a given modeling language 

[121]. Since a meta-model itself is a model, it is also represented in some modeling language. One 

modeling language can have more than one meta-model, each one represented in a different modeling 

language. Of special interest is the case when the meta-model of a modeling language uses the same 

modeling language. In that case, expressions in the meta-model are represented in the same language 

that describes the meta-model. This meta-model is called reflexive meta-model. Minimally reflexive 

meta-model uses a minimum number of modeling language elements (for that meta-model purpose). 

Since this meta-model is defined as reflexive, there is no need for upper levels, because it defines itself 

with its own concepts. 

Generally, there is a modelOf relation between a meta-model and its object system; it is a 

modeling language. An instanceOf relation between a meta-model and a model often replaces it. 

Indeed, they coincide between the same entities but are different in nature. The grammar of some 

programming language possesses characteristics of all words (and sentences) which that language can 

contain. So, we can take a language grammar as a model of that language (an example of such a 

grammar is the Extended Backus-Naur Form, EBNF). In the case of a modeling language, the model of 

this language is its meta-model. The relation between a model written in some language and its meta-

model is called conformantTo [35]. This relation is defined as a composition of two relations: 

elementOf, denoting the membership of a model to a language, and representationOf, denoting the 

relation between an object system and its model. An example of a meta-model, a model, and an 

instanceOf relation is shown in Figure 2. 

 
Figure 2. Example of meta-models, models and instanceOf relations [67] 

An important difference between the two relations is observed when the language-dependent nature of 

instanceOf is considered. Let us assume that we define another meta-model of the Java language 

expressed in UML (see Figure 2). The UML meta-model may contain a class called Method. The 

knowledge we obtain is that there is a set of methods in every Java program that has a certain structure. 

We must be able to identify methods in the source program and to recognize their structure according to 

the definition of the Method class. It is the consequence of the ModelOf relation that exists between the 

Java meta-model and a Java program. However, we cannot consider the Java program as an instance of 

the UML model in the same way as we did it for the Java grammar. An instance of the UML model is 

defined according to the semantics of UML, and is a set of objects. This instance is a representation of 

the Java program and is a different entity. The UML model of Java is also a model of the Java program 

represented in UML. In addition, there is an instanceOf relation between these entities governed by the 

UML semantics. Much like the relation between a source program and its grammar, this instanceOf 

relation helps us interpret the knowledge from the UML model in terms of the Java program represented 



Milan Milanoviĺ 

 

 

8 

 

in UML. These two instanceOf relations are different. The first one is defined for the parsing process. 

The second one relies on the UML semantics. There is no direct language-specific instanceOf relation 

between a source program in Java and its UML model. However, the latter is a model of the former, 

although we cannot trace the knowledge from the model to the object system via an instanceOf relation. 

 In summary, we can say that instanceOf relation exists between a class and its members and 

supports the interpretation of the knowledge obtained from the class definition in terms of class 

members. In that case, we also have a ModelOf relation between the class definition and class members. 

 

2.1.4.  Meta - modeling architecture  
 

A meta-modeling activity can be applied to specify a modeling hierarchy that assumes a multi-

level organization, called meta-modeling architecture. Figure 3 shows an example of this architecture. 

 

 
Figure 3. Meta-modeling architecture [67] 

The ConformsTo relation means that a model is constrained by the rules defined in its meta-model. At 

the bottom level of this architecture, we have models expressed in various modeling languages. This 

level is called the model level. An example model in this level is ModelL written in a modeling language 

L. We can build a model of L (that is, a meta-model) LModelML expressed in another language, called 

Meta-language (ML). Models of the languages used in the model level form the second level in the 

stack. It is called the meta-model level. There is a ModelOf relation between the meta-model of a 

language and models expressed in that language. We can apply the same approach to the models at the 

meta-model level. The models of the languages that express meta-models form the third level, called the 

meta-metamodel level. At the third level of the meta-modeling architecture shown in Figure 3, the 

model MLModel is expressed in the ML language itself. In this way, the top level contains a self-

reflective model. It is expressed in the language that is modeled by that model. The intuition behind this 

is the following. At the meta-model level, we have models of modeling languages expressed in ML. 

However, ML is a modeling language itself, and therefore it should be possible to apply ML itself to 

express its model. 

 Examples of technologies that rely on meta-modeling architecture are Meta Object Facility 

(MOF), section 2.1.5.1, and Eclipse Modeling Framework (EMF), section 2.1.5.5. 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

9 

 

 An example of the relation between a model and its meta-model in Figure 4 that represents the 

meta relations between a Petri Net model and a simplified Petri Net meta-model, represented in UML. 

Meta relation, associates each element of a model with the meta-model element it instantiates. 

 

 
Figure 4. Meta relations between Petri Net model and meta-model [4] [36] 

As any other model, a Petri Net model network is composed of a certain number of different elements. 

In the context of Petri nets, these elements conform to places, transitions and arcs, and they constitute a 

model. These different elements, together with the way they are connected, conform to the Petri Net 



Milan Milanoviĺ 

 

 

10 

 

meta-model. In the same way, each model conforms to its meta-model. This relation associates each 

model element with a meta-model element that it instantinates. In addition, the meta-model itself can 

conform to some meta-metamodel (as it is shown in Figure 3, MLModelML). 

 

2.1.5.  Model Driven Architecture  
 

The Model Driven Architecture (MDA) defines an approach to specifying Information 

Technology (IT) systems and that separates the specification of functionality from the specification of 

the implementation of that functionality on a specific technology platform [85]. The MDA approach 

and the standards that it supports enable for a model that determines some system functionality to be 

realized on multiple platforms through additional standards for mapping. The MDA is specified by the 

OMG consortium
1
 in a series of standards: Unified Modeling Language (UML), Meta-Object Facility 

(MOF), Common Warehouse Metamodel (CWM), etc. An illustration of the MDA idea is shown in 

Figure 5. 

 
Figure 5. Model Driven Architecture (OMG) 

Model is the most basic element of the MDA. There are several definitions of the term "model" (see 

section 2.1.1), and the most general one is that a model is a simplified view of reality [122]. Each model 

itself is defined for some domain, and then it is transformed to models that can be executed on a specific 

platform. A basic assumption of MDA is that a unique model underlies each information system. Such a 

model does not depend on a potential implementation platform, on which the corresponding application 

can be run. In other words, the system requirements can be specified as a Computation Independent 

Model (CIM) [85]. The model defined at this level is sometimes also called the domain model or the 

business model. It does not depend on how the system is implemented. In software engineering, a 

domain model is specified by the domain experts. Platform Independent Model (PIM) can be also used 

to describe a system. It is lower-level and more specific than CIM in terms of being a computation-

related model, but it does not include characteristics of specific computer platforms. To get a model that 

takes into account some target platform specifics, i.e., a Platform Specific Model (PSM), we need to 

define certain transformations that transform the corresponding PIM to the desired PSM. Each PSM 

includes information about some software implementation details (such as the programming language 

and operating system) and the hardware platform. Code generation is done by additional translation 

from the PSM into a certain programming language. 

The MDA is based on four-layer metamodeling architecture shown in. The standards supporting the 

four-layer MDA architecture are: 

¶ Meta-Object Facility (MOF); 

¶ Unified Modeling Language (UML); 
                                                   
1 The Object Management Group, http://www.omg.org/. 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

11 

 

¶ XML Metadata Interchange (XMI). 

 
Figure 6. The four-layer Model Driven Architecture and its orthogonal instanceOf 

relations: linguistic and ontological [37] 

On top of this architecture, at the M3 level, is a reflexive meta-metamodel, which is called 

MOF. It is an abstract self-defined language and a framework for specifying, constructing, and 

managing technologically independent meta-models. It is a basis for defining any modeling language, 

such as UML or MOF itself. MOF also defines a backbone for the implementation of a metadata (i.e., 

model) repository described by meta-models. The rationale for having these four levels with one 

common meta-metamodel is to enable both the use and generic managing of many models and meta-

models, and to support their extensibility and integration. 

All meta-models, standard and custom (user-defined), that are defined in MOF are placed at the 

M2 level. One of these meta-models is UML, which is a language for specifying, visualizing, and 

documenting software systems. The basic UML concepts (e.g. Class, Association, etc) can be extended 

in UML profiles in order to adapt UML for specific needs. Models of the real world, which are 

represented by concepts of a meta-model from the M2 level, are at the M1 level of the MDA four-level 

architecture. The bottom layer is the instance layer (M0). At the M0 level are things from the real world 

that are modeled at the M1 level. For example, the MOF Class concept (from the M3 level) can be used 

for defining the UML Class concept (M2), which further defines the Student concept (M1). The Student 

concept is an abstraction of a real thing student.  

One can ask the question: what layer contains abstractions of a certain model? If we consider 

classes, their instances in UML are objects. However, objects are defined at the M2 level in the UML 

meta-model, which means that their instances are located in the M1 layer. Since even objects 

themselves model concrete (singular) real-world things, this explanation can be considered true. In [5] it 

is said that there are two types of instantiation in meta-modeling: linguistic and ontological. Linguistic 

instantiation is interpreted in the MDA in an ordinary way - it means that a UML class is an instance of 

the meta-class from the UML meta-model. However, one class in some domain has instances that are 

objects. The relation between objects and class is an ontological instantiation relation. This kind of 

instantiation connects abstractions located at the same linguistic layer. According to this interpretation, 

at the M0 layer are things from real world (instances) and abstract concepts about thing groups 



Milan Milanoviĺ 

 

 

12 

 

(classes). UML 2.0 and MOF 2.0 emphasize the linguistic dimension. Ontological levels exist at the M1 

level, but the meta-model border does not explicitly separate them. This is based on an altered 

perception of the MDA four-layer architecture, as originally class instances have been located in the M0 

layer. 

XML Metadata Interchange (XMI) is the standard that defines mappings of MDA-based meta-

metamodels, meta-models, and models onto XML documents and XML Schemas [93]. Since XML is 

widely supported by many software tools, it empowers XMI to enable better exchange of meta-

metamodels, models, and models (see section 2.1.5.3). 

2.1.5.1.  Meta - Object Facility (MOF)  

 

Meta-Object Facility (MOF) [92] in its current version (2.0) represents an adaptation of the 

UML core. MOF is a minimal set of concepts that can be used to define other modeling languages. It is 

similar (but not identical) to the part of UML used in structural modeling. In the latest version of MOF 

(2.0), concepts, as well as UML Superstructure concepts [96], are derived from the concepts defined in 

the UML Infrastructure standard [96]. 

Figure 7 shows meta-models that depend on the UML core package. UML Core package defines 

the basic concepts that are used in modeling (e.g. Elements, Relationships, and Classifiers). In MOF 

2.0, there are two meta-metamodels: 

¶ Essential MOF (EMOF) - represents a basic package that has a minimal number of elements for 

modeling (e.g., Class , Property , and Operation ). 

¶ Complete MOF (CMOF) - more complex, includes EMOF, but also enables a higher 

expressivity, with concepts such as Link , Argument , Extent , and Factory . 

 

 
Figure 7. Core package as the common kernel [37] 

The main four modeling concepts in MOF are: 

¶ Class  - models MOF meta-objects, concepts which are entities in meta-models (e.g., UML 

Class , Attribute  and Association ); 

¶ Association  - models binary relationships (e.g., UML and MOF superclass); 

¶ Package  - modularizes other concepts, i.e. groups similar concepts; 

¶ DataType  - models primitive types (e.g., String  and Integer ). 

 

In the root of the MOF hierarchy is the Element  concept. It classifies elementary, atomic 

model elements. All other concepts in MOF inherit from this concept. 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

13 

 

2.1.5.2.  Unified Modeling Language (UML)  

 

Unified Modeling Language (UML) is a language for specifying, visualizing, and documenting 

software systems, as well as for modeling business and other non-software systems [96]. UML enables 

diagram construction, which models a system by describing conceptual things (e.g., a business process) 

and concrete things (e.g., software components). UML is not limited only to software engineering 

domain; it can be used in other areas, such as: banking, health care, defense, etc. UML is often 

identified as a graphical notation, which was true for its initial versions. Recently, UML is recognized 

more like a language independent from a graphical notation rather than a graphical notation itself. 

The basic building block of UML is a diagram. There are several types of diagrams for specific 

purposes (e.g., time diagrams) and a few for generic use (e.g., class diagrams). UML version 2.0 defines 

the following types of diagrams: 

¶ use case diagram; 

¶ class diagram; 

¶ behavior diagrams: 

o activity diagram; 

o statechart diagram; 

¶ interaction diagrams: 

o sequence diagram; 

o collaboration diagram; 

¶ implementation diagram; 

o component diagram; 

o deployment diagram. 

 

When UML is applied to software, it represents a bridge between the original idea for some 

software and its implementation [104]. UML also provides a possibility for collecting specific 

requirements for some specific system. 

UML as a graphical notation is not a software process; it is designed for use in a process of 

software development and it possesses all characteristics that enable it to be a part of a software 

development process. Since main UML diagram concepts are defined in the Superstructure package of 

the UML specification that includes basic concepts of the UML core [96], it can be said that MOF and 

UML are very similar. 

2.1.5.2.1. UML Profiles 

 

UML Profiles combine concept stereotypes, tagged values, and constraints in order to define a 

precise UML dialect for a specific purpose. This means that it is possible to create new types of 

elements for modeling by extending existing elements. When new elements are created, it is possible to 

add them to existing UML tools. With profiles, classes can be extended with stereotypes that represent 

predefined classes with certain methods and attributes. For example, Figure 8 shows one such a 

stereotype - EJBEntityBean. 

A UML Profile definition in the context of the MDA four-layer meta-modeling architecture 

means extending UML at the meta-model layer (M2). Tagged values are defined as stereotype attributes 

(in Figure 8 tagged values of EJBEntityBean  are IsReadOnly, DataSource, etc.). It is possible to 

define constraints that additionally refine the semantics of the modeling element they are attached to. 

They can be attached to each stereotype using OCL (Object Constraint Language) or the English 

language (i.e. natural language) comments, in order to precisely define the stereotypeôs semantics. 

 



Milan Milanoviĺ 

 

 

14 

 

 
Figure 8. An example UML Profile for Enterprise applications in Java 

So far, many important UML Profiles have been developed. Some UML Profiles are adopted by OMG, 

such as Enterprise Application Integration [132] and UML Profile for MOF [133]. In addition to these 

formal specifications, there are several well-known UML Profiles widely accepted by software 

engineers, such as UML Profile for building Web application developed by Jim Conallen [19]. 

2.1.5.3.  XML Metadata Interchange (XMI)  

 

XML Metadata Interchange (XMI) is an XML-based standard for sharing meta-data in the MDA 

[93]. XMI is defined by XML, using two XML Schemas:  

¶ XML Schema for MOF meta-models; 

¶ XML Schema for UML models. 

 

The first one defines the syntax for sharing both MOF-based meta-models and the MOF 

definition itself. Since UML is a modeling language that developers use for describing various models, 

it is obvious that there is a need for an XML Schema for exchanging UML models. In fact, there is a 

standardized one called the UML XMI Schema. The UML tools such as IBM/Rational Rose, Poseidon 

for UML, Together, etc. support it, but some researchers report that we always loose some information 

when sharing UML models between two UML tools [126]. OMG has released several versions of the 

XMI standard: 1.0, 1.1, 1.2 and 2.0, and the latest version is 2.1. 

Figure 9 shows the relationship between UML models and XMI files. 

 

 
Figure 9. Relationship between UML, XML Schema and XMI 

Since there is a set of rules for mapping UML and MOF models to XML Schema, it is possible 

to create XML Schema for every UML model. Objects as instances of such a model can be 

interchanged conforming to these schemas. An XML Schema can be created for any MOF-based meta-

model. 

An example of an XMI file (in version 1.2) is shown in Figure 10. 

 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

15 

 

<XMI xmi.version = ' 1.2 '  xmlns:Model = ' org.omg.xmi.namespace.Model '>  

 <XMI.content > 

   <Model:Package  xmi.id = ' a1'  name = ' OCL'  annotation = ''  isRoot = ' false '  

     isLeaf = ' false '  isAbstract = ' false '  visibility = ' public_vis '>  

     <Model:Namespace.c ontents > 

       <Model:Association  xmi.id = ' a2'   

         name = ' A_Operation_parameters_Parameter_operation '  

         annotation = ''  isRoot = ' true '  isLeaf = ' true '  isAbstract = ' false '   

         isDerived = ' false '>  

         <Model:Namespace.contents > 

           <Model:AssociationEnd  xmi.id = ' a3'  name = ' parameters '  annotation = ''  

             isNavigable = ' true '  aggregation = ' none '  isChangeable = ' true '>  

             <Model:AssociationEnd.multiplicity > 

               <XMI.field >0</ XMI.field > 

               <XMI.field >- 1</ XMI.field > 

               <XMI.field >true </ XMI.field > 

               <XMI.field >true </ XMI.field > 

             </ Model:AssociationEnd.multiplicity >  

   <! -- ... -- > 

</ Model:AssociationEnd > 

<! -- ... -- > 

         </ Model:Namespace.contents > 

        <! -- ... -- > 

       </ Model:Association > 

      </ Model:Namespace.contents > 

    </ Model:Package > 

 </ XMI.content > 

</ XMI> 
 

Figure 10. An excerpt from the MOF XMI document representing the OCL meta-model 

2.1.5.4.  Object Constraint Language (OCL)  

 

Object Constraint Language 2.0 (OCL) as an addition to the UML 2.0 specification. It provides 

a way for expressing constraints and logic in models. OCL represents a language for defining integrity 

rules. It is not new in UML 2.0; OCL was first introduced in UML 1.4. However, from UML version 

2.0 it is formalized by using MOF 2.0 and UML 2.0, which is defined in the UML OCL2 specification 

[94]. OCL is just what its name says: a language. It has its syntax and semantics defined by the UML 

language, and it has keywords. By its design, OCL represents just a query language, and it cannot 

change a model in any way [104]. 

 OCL can be used for expressing: different pre- and post-conditions, invariants (constraints that 

always must be true), constraint conditions, and results of model executing. It can be used anywhere in 

UML, and it is usually associated to a class by using a comment (annotation). When an OCL expression 

is evaluated, the result is temporary. This means that the associated class, i.e., its concrete instances 

(objects), cannot change its condition during the expression evaluation. 

 OCL has four basic data types: Boolean , Integer , Real  and String . Each OCL 

expression must have a context. The context can often be identified by where the expression is written. 

For example, a constraint can be attached to an element by using a comment. The context of a class 

instance can be referred to by using the keyword self . For example, if we have a constraint on the 

class Student  that says: "a student's average grade (attribute average of type Real ), must always be 

greater than 5.0", an OCL expression can be attached to the class Student  by using a comment and by 

referring to the average in this way: self.average > 5.0 . 

 OCL also includes constraints on methods and attributes, as well as different types of conditions, 

and possesses a possibility (methods) for manipulating data collections. 



Milan Milanoviĺ 

 

 

16 

 

2.1.5.5.  Eclipse Modeling Framework (EMF)  

 

Eclipse Modeling Framework (EMF) is a conceptual modeling framework for Eclipse [124]. 

Eclipse is an open-source project lead by a consortium of companies, IBM being among them, with the 

goal to provide a highly integrative tool platform. Its current version is 2.6.1 (September 2010). Eclipse 

includes a core and generic environment for tool integration and a Java environment for development 

that is built by using that core. Other projects use the basic core to support different types of tools and 

development environments. The projects in Eclipse are implemented in Java and can be run on most 

operating systems. 

The Central part of the EMF-based modeling is a model, which includes a set of elements 

defined by UML and its standard notation. It is a UML class diagram in the first place. In the EMF, a 

model is not that general and high-level as it is usually assumed.  

The EMF does not require a complete, distinct methodology or some sophisticated tools for 

modeling. Eclipse Java Development tools are the only tools that are really needed. EMF connects 

modeling concepts directly with their implementations, thus bringing Eclipse and Java programmers 

closer, which results in modeling possibilities that are easy to learn. 

2.1.5.5.1. Basic concepts of the Eclipse Modeling Framework 

 

EMF is a Java-based environment for development of tools and other applications based on a 

structured model. It enables for developing a complete model for an application by using UML 

diagrams. This model can be used only for documentation, or it can be used as input for generating a 

part of an application or the complete application. This class of modeling usually requires expensive 

tools for object-oriented analysis and design. EMF is often used as a model handler, by model 

transformation tools. An important characteristic of the EMF is that it offers a "low entry price" because 

it requires only a small portion of UML modeling (classes and their attributes and relations), i.e. only a 

graphical modeling tool. EMF uses XMI for storing model definitions. To create such a document, there 

are four options: 

1. creation of an XMI document, directly, by using an XML or text editor; 

2. export  of an XMI document from modeling tools (such as IBM Rational Rose); 

3. annotation of Java interfaces with model attributes; 

4. use of XML Schema to describe the form of model serialization. 

 

The first and third approaches require knowledge of XML and Java, respectively, which is good 

if the developer is familiar with these technologies. The second approach is preferred if we use a 

modeling tool. The last approach is suitable for creating applications that must read or write some XML 

content to a file. 

EMF consists of three fundamental pieces: Core, EMF.Edit and EMF.Codegen. Core provides a 

basic support for generating and executing classes implemented in Java for a model. It includes a meta 

model (ECore) for describing models and runtime support for the models including change notification, 

persistence support with default XMI serialization, and an efficient reflective API for manipulating 

EMF objects generically. EMF.Edit includes generic reusable classes for building editors for EMF 

models and extends the Core by adding support for generating adapter classes that enable preview and 

work with the model, as well as a basic (visual) editor for the model. It also has a command framework, 

including a set of generic command implementation classes for building editors that support fully 

automatic undo and redo. The EMF code generation facility (EMF.Codegen) is capable of generating 

everything needed to build a complete editor for an EMF model. It includes a GUI from which 

generation options can be specified, and generators can be invoked. The generation facility leverages 

the JDT (Java Development Tooling) component of Eclipse. 



PhD Thesis   Modeling Rule-driven Service Oriented Architectures 

 

 

17 

 

An overview of possibilities and the process of creating an ECore model are shown in Figure 11. 

 
Figure 11. Creating a platform independent ECore model 

EMF also supports three levels of code generation (from the model). It can generate a model, 

which is Java interfaces and implementation classes of all of the model classes, adapter, which adapts 

the model classes for editing and display (called ItemProviders), and editor, which is actually a 

structured editor for an EMF model. 

2.1.5.5.2. ECore modeling concepts 

 

The model used to represent EMF models is called ECore. ECore is itself an EMF model, so we 

can say that it is the meta-model to itself and is usually used to specify platform independent models. It 

is actually also a meta-metamodel. There is often a misunderstanding about meta-metamodels, but this 

concept is actually very simple. A meta-metamodel is just a model of another model, and if that other 

model is a meta-model to itself, then meta-model is actually meta-metamodel (this concept can 

recursively go to meta-meta-metamodels, but ECore puts a limit here, because it is described by itself). 

Figure 2.34 shows the ECore model with its core elements (attributes, relations and operations). 




































































































































































































































































































































































































































































































