UNIVERSITY OF BELGRADE
FACULTY OF ORGANIZATIONAL SCIENCES

MI LAN V. MI LANOVI L

MODELING RULE-DRIVEN SERVICE ORIENTED
ARCHITECTURES

PHD THESIS

Belgrade, 2010.

SUPERVISED BY:

DrVI adan D e@rofessof i |
Faculty of Organizational Sciences, University of Belgrade, Serbia

COMITTEE MEMBERS:

Dr Dragan Djuril Assistant Professor
Faculty of Organizational Sciences, University of Belgrade, Serbia

Dr Si ni Assistahk Rrgfessbr,

Faculty of Organizational Sciences, University of Belgrade, Serbia

Dr Dr ag an Assaigte Rrafekspr

School of Computing and Information Systems, Athabasca University, Edmonton,
Canada

Dr Dr a g aAssisiuat Proféssor
School of Electrical Engineering, University of Belgrade, Serbia

Date of PhD thesis defence:

Date of PhD thesis promotion:

Model ovanje servisno orijentisani
pravila

Apstrakt:
Ova doktorsk disertacija je fokusirana na dizajniranje i implementacjiu jezika za modelovanje

poslovnih procesa upotrebom pravila za servisno orijentisane arhitekture (SOA). Jezik je baziran na de
facto standardu za modelovanje poslovnih procesa (tj. BRRMNgenerénom jeziku za definisanje

pravila (R2ML-u).Post oj el a regenja u ovoj oblasti su pol
nefleksibilna za dinami|] ku adaptaciju poslovne
koj a nud:i vel u fleksibil nostavia a hjiroaimn jalggriomima de
rezonovanj a. MeLlLut i m, model ovanje poslovnih p
programere u odnosu na ukupno razumevanja poslovnih procesa.

U ovoj di sertaciiji je predl ogejne huikblrjiudlnuij ep
orijentisanu, ali i na pravilima baziranu perspektivu. Jezik (na pravilima bazirani BPNBRMN) se
kori sti za modelovanje razlilitih tipova komg
orkestracije i koreografije. Pleto d na i stragivanje u domenu model ¢
dobre prakse za dijagrame toka nisu najbolje p
poslovnih procesa imaju ogranil|l enmnmuavpoddar,gkiu iza c
podrgka za dinami|l ke promene delova poslovne |
potreba za metodol ogijom, koja bi dozvolila s
modelovanju orkestracija sesdi r e | ni ci , pravil a i procesi . Kako
radu se prelage metodologija za sistematsko de

arhitektura.
| stragival ka zajednica | e bodeloenjaogkesaacia semisaf o k
u domenu kompozicija servisa, dok je modelovanje koreografija zauzimalo manje mesta u tim

istragivanji ma. Sledel i zaht evi u domenu model
modeli koreografija nisu dobre p o j e n i sa relnicima model a, i)
del ova poslovne |l ogi ke od model a koreografij.
koreografijama, i) model i koreografija gsadr
voditi ka nekonzistetnost:i i mpl ement acije i ne

Kako bi evaluirali rBPMNj ez i k u o0odn o sste komgozicija sservisa | kakoebi v r
uporedil. dato regenje sa postojelim rezrazj i ms
interakciju servisa i uzora za kontrolu toka kod modela orkestracije, kao i agilnih uzora kako bi
evaluirald@ di nanmidkold sma epgo k azxgaelnij akeakorstiti s e r
razlilitim studijama \afjeudalail posloanihlprocesa.gl enj a za m

TakolLe smo razvili sof t v e rpwtiooni, moé mamivipra rBPMN b a
editor, koje ukljuluje implementaciju rBPMN jezik

baziranim poslovnih prosela WBPMN jeziku. Pored opisa dizajna i implementacije razvijenog
softverskog r egenjkomparatvra andlizisrBRMN gezika saadrugim jeziciana u
oblasti modelovanja poslovnih procesa

Kl'julne reli

Poslovni procesi, poslovna praviletamodeli, BPMN, R2ML, rBPMN, metodologija

Modeling rule-driven Service Oriented Architectures
Abstract:

This PhD thesis is focused on the design and implementation of a novbbeglé business process
language for modeling Service Oriented Architees (SOA). The proposed language is built on a de
facto standard for process modeling (i.e., BPMN) and a general rule markup language (R2ML). Tt
existing solutions to this topic demonstrated that preodgssited models might be too rigid for
dynamic adptations of the business logic. Ridased approaches are considered an alternative, which
offers more flexibility thanks to the declarative nature of rules and their underlying reasoning
algorithms. However, modeling a business process through ruldgdsoas process for developers in
terms of the overall business process comprehension.

In this thesis, we propose a modeling language that integrates botlamdl@rocessriented
modeling perspectivesf a business proces¥he language (rulbased BPMI i rBPMN) is used to
model different types of SOA compositions, including hestrations and choreographi®egarding
the orchestrationsthe previus research on business processdeling of service orchestrations,
demonstrated that: i) best practices workflows are not fully covered in the existing languages; ii)
business process languages have limited support for representing logical expressions and rules; iii) th
is a limited support for dynamic changes of parts of business logic in execualte ®rchestrations;
and iv) there is a need for a methodology, which allows for systematic use of the three key aspet
contributing to the modeling of service orchestratibrimisiness vocabularies, rules, and processes. In
order to address these clealjes, in addition to the rBPMN language,this thesiswe propose a
methodology for defining a systematic set of steps for the development process of service orient
architectures.

The research community has so far mainly focused on the problem ofimgodé service
orchestrations in the domain of service composition, while modeling of service choreographies hz
attracted less attention. The followindentified challenges in choreography modeling are tackled in
this thesis:i) choreography models arot wellconnected with the underlying business vocabulary
models.ii) there is limited support for decoupling parts of business logic from complete choreograph
models. This reduces dynamic changes of choreograpiijieshoreography models contain rediant
elements of shared business logic, which might lead to an inconsistent implementation and incompatit
behavior.

In order to evaluate the rBPMN language for different service compositions and to compare oL
approach with related solutions, we leveragessage exchange patterns, sefivicaction patterns for
choreography models, control flow patterns for orchestration models, and agility patterns for evaluatic
of dynamicityof business processda addition, we show how the developed languagebsansed in
different case studies to model real world business processes.

To have a proof of concept, we developed a software environment based on Eclipse, called rBPNV
Editor, which includes implementation tife rBPMN language and also a graphical edftordefining
rule-based business processes in the rBPMN language. Along with the description of the design a
implementation of the developed software environment, the thesis praidesparative analysis of

the rBPMN language with other similar langga in the area of modeling business processes

Keywords:

Business processes, Business riMstamodels, ModeDriven EngineeringBPMN, R2ML, rBPMN
methodology

1.

2.

CONTENTS

INTRODUGCTION .ttt et e e et e ettt e e et e e et e e et bnaeeea e e eaa e e ean s eeenneeesannaeeeneaeannns 1
1.1 RESEARCH GOALS. ...ttt eieti ettt e et e ettt e ettt e et e ettt e ettt e aetta e et b e e e et e e e ea e e e taaneaeta e e et e ee et e aesnnee et e aeeanaaenn 2
1.2. CONTENTS PER CHAPTER ...t ttttne ettt ettt ettt s e eaa e eeaa e eea s et et s e aaata s e e taaaeaa e e et s e e et aeaaebn e eeeaneaetneaebneeebnnnas 3

LITERATURE REVIEW Lttt ettt et e et e ettt e e e et e e e ta e e et e e et n e e et s eeeanans 5
2.1. MODEL DRIVEN ENGINEERING. ...t . ttttuitttteetti ettt aetet e aetaeeeta e eeta s ae st s aeeneaeenaaeanaaeanaaeasanaaetnaaetneeennaes 5

2.1.1. Definitions of model and MOAElING...........uuuuuiiiiiii e 5

2.1.2. MOOEIING PHINCIPIES. ..ttt e e e ettt et e et bbbt s s e e e e e e e e e e ennnbnnnand 6

2.1.3. Metamodels and MetENOEIINGoiii i a e 6

2.1.4. Metamodeling ArChItECTUIR.ot et e e e e e e e e et e e et b bn b s e e e e eeeeeeeeees 8

N T T Y To o 1= B V7= TN (o] o (Yo (U T 10

2.1.5.1. MetarODJECt FACIHILY (MOF)....eiiiiiiiiiiiiitieeei e e e e e e s e e e e e e e ettt ettt et ettt e eeeteeeeeeeeeenneeneennnnes 12
2.1.5.2. Unified Modeling Language (UML)..........cooiiiiiiiiiiiiiiieeeeee e e e n e e e e e e e eeeeas 13

D T R U 1Y o 1 = USSR 13

2.1.5.3. XML Metadata Interchange (XIML).......coooiiiiiiiiii e e e e s e e e e e e eeeeas 14
2.1.5.4. Object Constraint LAaNgUagE (OCL)......coeiiiiiiiiiiiiiiiiee ettt e e e e e s e e e e e e e eeeeeeas 15
2.1.55. Eclipse Modeling FrameWork (EME)......ccooiiii i 16
2.1.5.5.1. Basic concepts of the Eclipse Modeling FrameworK. ... 16
2.1.5.5.2. ECOre MOAEliNG CONCEPLS.evvvrrrtitittittiiiiittattitttii s e e e e e e s e e e s e e e e e e e e eeeeeeeeatttteetaeattteeeeeeaessnennnnnenes 17

2.1.5.6. Graphical Modeling FrameWOork (GIME)...........ooiiiiiiiiiiiiieeeiiie i e e e e 20

2.2, SERVICE COMPOSITIONS. .ttt tetttu ettt eetta e eetaaeeeensaeesneaeanaeeanaeeaaaneeenaeeenaeesneeenntaanntnaeesnnaeerneeennseeennsans 22

A R VY= TR T 22

2.2.2. Process orChestratioRSWSBPEL...........coiiiiiiiii e e e e e e e e e e aaas 24

2.2.3. Process choreographi@SNSCDL...........coiiuiiiiiiiiii i 25

2.2.4. Process choreographi@SBPELACKOL...........i it e e e e e e e e e e e e et e e e eenanenn 28
2.3. BUSINESS PROCESSES ...t ttttuutetttttineetettaa e eeeatt e eteeaaa e e et e aeaaa e e et eeta e e e ee s b ee et eeanE e e e tees s eeeeetaaaeeeennnnen 29

P22 T I o 1 Lo =T o «3X= 1 To I (=1 011 o] oo N 20 29

2.3.2. Business Process flexibility and variability................oiiiiiiiii e 30

2.3.3. Business Process Modeling Languages (BPML).........oi oo 30

2.3.3.1. P OTT NMBES. ..t e et e e e e e a e e e e e e 31
2.3.3.2. Event Driven Process Chain (EP.C)..... ..ot 31
2.3.3.3. Integrated DEFinition Method 3 (IDEF3)........ccoooiiiiiiiiiii s e e 34
2.33.4. UML 2.0 ACLIVItY DIagrams (AD).......ceeeeeeeiiiiiiiieiei ettt e e e e e e e e e e e e e e e aeeaaaas 36
2.3.3.5. Agent ObjectRelationship Modeling Language (AORML).........uuuuuiiiiiiiiiiiiiiiie e e e e e e e 38
2.3.3.6. Let 08 ... D a Ll nnneeee e e s A0
2.3.3.7. 12 | P O PP PP PP TPPPPPN 42
2.3.3.8. Business Process Modeling Notation (BPIMN).............uuuuuiiiitiuiiiiiiiiiinssse s es e s e e e e e e e e e aaaeeeeeeeees 43
2.3.3.8.1. BPMN Language: Graphical CONCrete SYNTAXccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieie e a e e 43
2.3.3 8. L. L. BV ettt 43
2.3.3.8. 1.2, ACHIVILIES. ..ottt e et e e e e e et e e e e e et 45

P T R Tt B T 1= 111 1 ST TSP PUTPPPPRRUPPIN 45
2.3.3.8.1.4. CONNECHNG ODJECLSttt e e D)
2.3.3.8.1.5. SWIMIANES.....iiiiiiiiiitiiiit ettt e e e e s et e e e e e e eeeeenennennne 4D
2.3.3.8.1.6. ALIFACTS ...eeiiieiiiiei ettt e e e e et e e e e 46
2.3.3.8.2. BPMN Metamodel: ADSIract SYNtaX..........cooeiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeiiieeeeieeneeeeeeennnnnnnn s ssesnnnnn e A
2.3.3.82.1. Choosing BPMN metamodel for BPMN [@NQUAGE..............uuuriirmmimmmiiiiiiiiiaaeaeaaae e eeeeaaaeeaeeeeeeens 48
2.3.3.8.2.2. BPMN MELAMOUEL.......coiiiiiiiiiiiii ettt e e e e e e et e e e e e e st eeeas 50
2.3.3.9. Business Process Modeling Languages SUMMALY............oouuiiiiiiiieiiiieeiiiieiiiiiiiieieinnnniaeennnn s e e aaaaaeeens 59
2.4, BUSINESS RULES. ..ttt ettttte e ettt e e e ettt e et e e e ettt s e e e e et e et e e et e et b e e et e b b e e e e eebba e e e e eeba s e eeeebbnaeeeeeennan 61

2.4.1. BUSINESS FUIES CONCEPLS .. ciiiiiitiitiiitie e et iee ettt ettt e e e e e et e e et e e eeatebaa e e e eeeeeeeeeeeeeeesrtnnnnnaneeeeeeeesd 61

2.4.2. BUSINESS FUIE TANQUAGES.ceeeiiiiiiiii e e ettt e et e e et e ettt e e s e e e e e e e aeeeeeeesrtnnnnn e eeeeeeeesd 62

2.4.3. REWERSE I1 Rule Markup Language (R2ML) LangUAage...........ceuvurrrmmmuiiiniieeeeeeeeeeiiiieinins 63

2.4.3.1. R2ML Metamodel and concrete XMIasSed SYNTAX..........ceeeiiiiiiiiiiiiiiieiiiiieeeeeeeeieeeee e 63
b T I O 01 =T 1 Y/ 11 1= PSPPSR 64
2.4.3.1.2. DEIIVALION TUIBS ...eti ittt e ekttt e e e 44 e bbbt ettt e e e o4 e e b e ettt e e e e e e e s e bt be b e et e e e e eennennes 65
2.4.3.1.3. PrOOUCHION TUIBS ...ttt ettt e e e e e s s e e e e e e e e bbb e e et e e e e e e e s nnnnnneeeesd 66
2.4.3.1.4. REACHON TUIB ...ttt ettt et ettt e e e e et e e e e e e e e e e e e bbb b e e et e e e e e e antnneeeeeas 67
2.4.3.1.5. R2ML VOCABUIAIY......ceeeiiiiiiiiiiiiitte e e e e e e e e e e et e e e e e e e e e e e e e e e e eeaeeeeeeeeeaeeeeeeeeeeeeeeseensennsnnnnnnnnenes 69

2.4.3.1.5.1. Objects, Data, VariabIes..........cccooiiiiiiiii s 70

T R A N (] 1 PSP PP TRt 73

b S T I TR T o 0 11 - 1 76

S T I S o 1 o o 77

2.43.2. UML-Based Rule Modeling Language (URML)..........ccoiuiiiuiiiiieeee ettt e e 79
2.4.3.2.1. URML graphiCal NOLALION........ciiiiiiiiiiieii ettt e et e e e e e e e st e e e e e e e s s aneeeneees 79
2.4.3.2.2. MOEING rEACHON TUIES......cciiiiiiiiiieeeeee ettt eeeeeeeeeeeee 80
2.4.3.2.3. MOdeliNG AEIVALION FUIES.evviriiriiiiiiiiiii e e e e e e e e e e et e eeeteeeeeeeeeeeeeeeeeeansnnnnrnnnnnes 81
2.4.3.2.4. Modeling ProdUCLION FUIBS..........ccooiiiiiiiiiiie ettt a e e e e e e e e e e e e e e e aeaaeeees 81

2.4.3.3. Policy Modeling Language (PML).......cccooi it e e e e e e e e e e e e e e e eeeee s 81
2.4.3.3.1. Policy Modeling Language Metamodel...........coooiiiiiiiiiiiiiiiiee e 82
2.4.3.3.2. PONCY UML PrOfile. ... 83

2.5 INTEGRATION OF BUSINESS RULES AND BUSINES PROCESSESutttuititnietiieettiaseeetnaeeenneaeaneeesneesinnaeeennnns 85
3. RULE-ENHANCED BUSINESS PROCESS MODELING LANGU AGE AND METHODOLOGY 90
3.1 RBPMN GRAPHICAL CONCRETE SNTAX evuutttuuettunatenaaetneaeatnaestnaeetnsaaetneestnaaeaesnaesnnaaetneeernaaesnanaeesnnns 91
I I I Yo Tox= 1o 18] = T VA T T 1 =1 Y| PP PP TP UPPPPPPPPRRPPTPTNt 92
3.1.2. Integration of R2ML rules and rBPMN rule gateWays............couuuuuuiiiiieiiee e 93
3.1.2.1. Integration of integrity rules and the rule gatEWAYS............ovviiiiiiiiieeeiiiiiiee s 93
3.1.2.2. Integration of derivation rules and the rule gateWaAY.............ooviiiiiiiiiiiiiii s 94
3.1.2.3. Integration of production rules and the rule QatEMAY............cooviiiiiiiire e 96
3.1.2.4. Integration of reaction rules and the rule gateWAY.oovvevi i 97
3.1.2.5. Integration of PML policies in IBPMN aNQUAGE............ooiiiiiiiiiiiiiiiiiiieee s 100
3.1.3. Extension of Caditional Event Definition (rule @VeNt)............oovviiiiiiiiiiiiii e 101
3.1.4. Extensions for choreography MOAEINg...........cooiiiiiiiiiiiiiiii e 103
3.2. DESCRIPTION OF THE FBPIMIN METAMODEL ... tvttutettieeete e et e e eeat s e et e e et s eeetn s eeetseanesneeeennaeeeneeetneeennnas 105
3.2.1. WelHOIrmMEANESS RUIESouuiieieiiie ettt e e et e e e et s e e e e et e e e e aenaanaeeeeatanneeaeennnns 112
3.3. INTEGRATEDMETHODOLOGY FOR DEVEIOPMENT OF RULEDRIVEN SOAS.....ccuiiiiiiiiiiiieiee et 114
3.3.1. BUSINESS PrOCESS UESIGIN. . ceeiiitiiiiiii e e et e e et ettt e e e et e e ettt e ettt s e e e e e e e et e eeeeeeabbbba e e e e eeeas 115
3.3.2. Identification of variable SEgMENLS iN @ PrOCESS......ccvuueieeiieii e ieeer e e e e e e e e e e 115
3.3.3. Identification of appropriate SOftware PatterNS..........ccovvvuiiiiiiiies e eaee 116
G0 S I - = o = T | 118
TR T T U] (ST T [o I o o] 103V (=] T | o T 118
3.4. MAPPING OF BPMN TO SERVICE EXECUTIONLANGUAGE ... etiettineeeettiaeeteeentiseeseesi s eeeenti s eeaeeennnnaeeens 119
3.4.1. Mapping rBPMN constructs to orchestrations ABBEL)..........cccuuuiieriieiiiieeereein e e e eeineeererinaeeeeeens 119
3.4.1.1. INtegration Of FUIES INTO BPEL........coiiiiiii i e e e e e e e e e et e e e e e e aat e e e e eerba s 119
3.4.2. Mapping rBPMN constructs to choreographies (BPELACROL).........ccoviviiiiiiiiieiiii e 121
3.4.3. Architecture for integration of ruleS IOBPELcoii i e 121

4. MODELING SERVICE AND PROCESS PATTERNS INTHE RBPMN LANGUAGEccccoooviiiiiiieeeene. 124
4.1. REPRESENTATION OAMESSAGEEXCHANGE PATTERNS INRBPMN ... 124
4.1.1. WSDL 2.0 IBBOUNA MEPS.......coiiiiiiiiiiiiii ettt e e ettt r s e e e et e e e e e e e e e eaeennn s 125
4.1.1.1. 1O TP 125
4.1.1.2. RODUSE IRONIY. ... e e e e e e e e e e e e e e e eas 127
4.1.1.3. 1 T L | PSP PRSP PP PP 129
4.1.1.4. [T @]) o] gT- 1@ L | PP RPTTRPRN 132
4.1.2. WSDL 2.0 OUBOUNI MEPSuuiiiiiiiiiiiiieeeiitei ettt s e e e e e e e e e e e e eeebbbaanrae e e e e aeeeeas 133
4.1.2.1. (@111 5] YR PT R 134
4.1.2.2. RODUSE OUHONIY ... e aaeeaaeeeeeeeeeeaeeeeee 135
4.1.2.3. LO 81 [OO PPPTTRTUPPPPPPPR 136
4.1.2.4. (@10]121@] o] 170] 0 F-1 o FH PSSP PP TP 138

4.2. INTERACTION MODELINGIN RBPIMNeiiiiii ettt e e et e e e e e e e ena s 140
4.2.1. Singletransmission Bilateral Interaction PatternS.........ccooveeiiiiiiiiiiiiiiiiiie e 140
4.2.1.1. =T oo PP PPUPPUPUUPPPPPPPPPR 140
4.2.1.2. R B CBIVE. .t e e e e e e e aaaaaas 142
4.2.1.3. SENARECEIVE ...ttt a e e e e e aeaeas 143
4.2.2. SingleTransmission Mtilateral Interaction Patterns..............ovviiiiiiiiiiiiiiiie e 144
4.2.2.1. RACING INCOMING MESSAGES. ... e e e e eeeieeieieie ettt eeeeeaaaaaaeeeees 145
4.2.2.2. (@ T (o 1Y =10)V T= T o H TSR 146
4.2.2.3. ONE frOM MANY REEIVE.eeieiiiiiiiiiiiiieeitee e e e e e e e e e e e e e e eaaeaeeeeeeeeeeeeeeeettetteeeeteeeeeeeeesssssnnnnnsnnnnnan 148
4.2.2.4. ONE t0 MANY SENA/RECEIVE.ceiiiiieeeeeeeee eaaaaaaaaaeeeees 149
4.2.3. Multi-transmission INtEraCtioN PAEIMIS.iiiiieii ettt e et e e e e e eeeeeeeeeeerenaaae 151
4.2.3.1. LU LS o] LS N 151
4.2.3.2. (@001 1] T 1= 0 €= 18 LTSS £ PP 153

o = (o 10 (] g Lo o T= U1 (=1 1 SRR 155

4.2.4.1. REQUESE WIth TEIEITAL e e e et e e e e e e e nnnnnes 155

4.2.4.2. REIAYEA REGUESE.ce ittt ettt e e e e 4o e bbbttt e e e e e e st b ettt e e e e e e s s aaabbbnebeeeeeeaannnnnes 157
4.2.4.3. DYNAMIC ROULING. ...ttt ettt e e e 4ottt et e e e e e e s o e bbbttt e e e e e e annb bbb b b et e e e e e e s aannbbbeeeeeeeeannn 160
4.2.5. Mappings between rBPMN interconnection and interaction madels...............ccccoeeriiiiiiiiiiiineeen, 162
4.3. MODELING CONTROL FLOWIN RBPIMN ... et e e e 166
4.3.1. BasiC CoNtrol FIOW PatternS........ccceuiiiii ettt e s e e et e e et et s e e e e ettaa s e e eeesenaeaeee 166
4.3.1.1. The qURE C e 0. P b o Bl eee s 167
4.3.1.2. The AParal |l el..Splid. 0. RPat. .t el Do 167
4.3.1.3. The ASynchroni.z.at.i.ond. . .Rat. b e . 168
4.3.1.4. TheAi Excl usi ve QCh..i.Cc.e0. . . Pat.l. el D s 169
4.3.1.5. The ASi mpl e .mer.g.e.0. . . Pal d el N 170
4.3.2. Advanced Branching and Synchronization Patterns.ooovveeiiieiiiiiiiiiie e 171
4.3.2.1. The AMultiple..Chai.c.ef..Pat.b.er . 171
4.3.2.2. The AStructured Sync.h.r.oni.zi.ng..Mer.ge.0..Rat.t.er.n.172
4.3.2.3. The AMultiple.Mer.ged. . .Ral . el .. 173
4.3.2.4. The ADi scri mi.nat. o0, Pal b B i, 173
G T TR U (o (8 = L =11 (=1 1= R 174
4.3.3.1. The AArbitrar.y..Cy.cl.es.0. . . Pat. . el N ... 174
4.3.3.2. The Al mplicit Termi.nat.i.ono..Pat..ernn. 175
4.3.3.3. The AN out of..M.j.00.n0. . Pat.b.erlrl ... 176
4.3.4. MUIIPIE INSTANCE PAIEINISuuiiiiii ettt e e e e e e e e e e bbb anb b e e e e eeeeas 176
4.34.1. The fdMdhlet I nstances withowt..Synchir.oni.zat.i.ono... datter
4.3.4.2. The AMultiple Instances with atteRr.i.or.i.. . Knaown.. DI&si gn
4.3.4.3. The AMultiple Instances with a..PRri.or.i. .. .Known.. . RI8nht i ma
4.3.4.4. The AMultiple Instances with..no..a..Rr.i.or.i..RuntlBlme K|
G TR TS -1 (=] o= 1T =T o 1Y 182
4.3.5.1. The ADeH@iraed. Ba .t el s 182
4.3.5.2. The AMi |l est.oned. .. . Pal. . el .d . 183
4.3.6. CanCellation PatterNS........couuuuuuiiiiiii ettt e e e e e e 184
4.3.6.1. The ACancel Act.i.v.i.t.y.0.. RPat.l.ernn., 184
4.3.6.2. The ACancel..Ca.s.e.0. .. .Pal l @l . 185
4.4, BUSINESS RULES PATTERS FOR AGILE BUSINES PROCESSES.....c.uuttrruetrtarrnaeeetneentneennaernnsennnaeennnneres 186
N @70 1 o] I o [0V B LT o1 LT o L PP 187
4.4.1.1. The fADecision Logi.c...Abs.t.r..a.c.t..i.,.a.n.o...p.a.t.t.er.n........187
4.4.1.2. The fADecision Node to Bwus..nes.s..Rul.e..Bi.ndi.ngo.l1p&tt e
4.4.1.3. The fADecision with f.l.ex.i.bl.e..i.np.ut..dat.ao0..pa.t.t.elBh
4.4.1.4. The fADeciesioownt pfuted.iphal. t. el . s 190
N D - | = W 0 1 11 1= 1 | (PSSR 191

4.4.2.1. The AConstraints at pr.edef.i.ned..checkpo.i.nt.o..paldlt er n

4.4.2.2. The AConstraints at .mul.t.i.pl.e..che.ck.poi.nt.s.o..p.atlder n

4.4.2.3. The AConstraints enforced...by..external..Dat.a..Caol®% ext

4.4.3. Dynamic Business Process COMPOSITION.........ieiiririieiiiiiuiiseeereriis e e e e eaies e e seeeateneeseesaneeeeeannaeeeees 194
4.4.3.1. The ABushbasesed subproces.s..s.el.ect..ono..pat.t.er.n...194

4.4.3.2. The ABusiness Rule base.d..Rr.oces.s..Caompos.i.t.i.onol9%Pat t

5. IMPLEMENTATION OF TH E RBPMN LANGUAGE AND CASE STUDIES.......coco i 197
5.1. MODELING SERVICE ORCHESTRATIONS IN FBPMN LANGUAGEvuitiiit it s e ee e eana e 197
5.2. MODELING CHOREOGRAPHES IN RPBMN LANGUAGEeuiniitiiiiiteete e e e e e e et e et e et s et s e e aa st senaenaes 204
5.3. MODELING AGILE BUSINESSPROCESSES IN THE BPMN LANGUAGEcuivniitiitiieieee e e e e e eeana 210
5.4. RBPMN LANGUAGE IMPLEMENTATION: THE RBPIMN EDITORcviiiiiiiiicce e e e 218

6. ANALYSIS OF THE PROP OSED SOLUTION ...ttt e e et e e a e e e e 227
6.1. COMPARISON OFBUSINESSPROCESSMODELING LANGUGES FORBASIC CONTROL FLOW PATTERNS............... 227
6.2. COMPARISON OFLANGUAGESUSED FORMODELING OF SERVICE INTERACTION PATTERNS ...cuvviiniiiiieeenienen, 229
6.3. ANALYSIS OF RBPMN USAGE FOR MODELING AGILITY PATTERNS.....cutitititetnstneenseieeansenseneeneeseenssnssnssnnens 231

B O © 1 1[0 0 1 1]\ 233
7.1. ACHIEVED CONTRIBUTIONS. .ttt ttttttustaeta ettt etassssts et ssassassaseaeaeasassa et ean st ssassasessersansessessensssassnsensen 233
7.2. [0S X] = 0T Y Y| PR 234
7.3. FURTHER WORK AND RESBRCH DIRECTIONS. ...t tuitititttetttetttesnssssssnesssssesnsteenstiessisessrsesessienesesnesernnes 235

TR I I I = AN I 236

APPENDIX A. BASIC MAPPINGS BETWE EN BPMN AND WS-BPELcoooiiiiiiiii e, 246

=T 01 £ PP PPN 248

(1= L= TP SUPPT T PRPPTR 248

[1= PP 250
APPENDIX B. MAPPING RBPMN CONSTRUCTS TO CHOREOGRAPHIES (BPEL4ACHOR).........cceeeeiieeeeens 252
(= Lol T oF= L B 1Y LT TP PT PP 252
Participant references and partiCipant SEIS..........oiiiiiruiiiiiia e 252
Generation Of MESSAGE IINKS......coiiiiiiiiiii ettt e e e e e e e e e e e e e e e e bbb e e e eeeas 253
APPENDIX C. USE CASEMODELS IN THE RBPMN EDITORccoiiiiiiiiiiiiiiee e 254

APPENDIX D. RBPMN GRAPHICAL CONCRETE SYN TAXFOR RULES ..., 258

PhD Thesis Modeling Rule-driven Service Oriented Architectures

1. Introduction

Serviceoriented architecture (SOA) & software paradigm for building flexible and loosely coupled
software systems based on services. Services are software entities that can be easily discove
published and described. SOA approach to creation of software sysetms enables assembl
appliations independent of specific platform by discovering and calling services to accomplish certai
task.The mainidea behind SOAs is théinstead of building or buying monolithic software systems, in
which the business logic is hacdded, applications shild be composed in a flexible way, using well
defined software services that may be distributed over the Inber@t SOA enables lightweight
approach tahe collaborationamongdifferent organizations by exposing theiremal operations as
services. In the context of SOAsservice providers expose their services by using service brokers
(contains directory of services), and those services can be found by service requesters. Web servi
represent the mogtromising archiecture for implementation of SOA paradigm by using the Internet as
communicatiommedium and some welinown protocols, including the Simple Object Access Protocol
(SOAP) [L34 for transmitting data, the Web Services Descriptloanguage (WSDL) 136 for
defining services, and the Business Process Execution Language for Web Services (BPEOHS) [
orchestrating services and Web Services Choreography Description Lanfw&CDL) [55] for
defining services c¢hor eodescabmdy iopesompoNéatéhat Support | ¢
rapid,lomc o st composition o f99dweb senviceb calhe eamposqu htities a t i
that support automated execution lofisiness processggalled service compositions)A typical
modeling languagdor representing these processes is the Business Process Modeling Nitation
BPMN [88].

In this context, ModeDriven Engineering 9] [34] paradigm is of great relevance, as service

compositions can be represented as software models, where such service compositions are used
realizaion of composite applications in servioeiented enterprise computing environments. Siace
business processan berealizedthrougha composition of services, processes of this kind are also
called service compositions. However, current solutions toefimgd SOA compositions have some
serious drawback®9], such as: i) inability to abstract the business logic at the problem domain level,
so that changes of the (parts of) business logic do not trigger the change of ovees$ momposition;
i) support of the modeling otomplex service compositions where one should be able to define rules
of interaction between multiple business process end points in a unique way; and iii) increase
flexibility and adaptivity of businesprocesses realized as SOAs by isolating variable parts from the
reusable parts of a business process and by combining the reusable parts with business rules that m
the variables parts.

Ontheothehand we have Business pr adee®@ceptsanethogss aneg n
techniques to support the design, administration, configuration, enactment, and analysis of busine
pr oc e 449e Bhas, a[business process consists of a set of activities that are performed ir
coordination in an organizational and technical environment. These activities jointly realize som
business goals. Each business process is enacted by a single organization, but it may interact v
business processes performed by other organizatibt§. [Business processes are represented by
business process models, where following MDE principles, models are expregtechodeling
languages, which are defined byetamodels that are associated with notatiohghe modeling
languagesoften of a graphical nature. A variety of modeling languages exists for the specification o
process models, and they can be classified according to their focal modeling construct, according
[151]: i) Activity-centeed; processes as a network of tasks or actiyitigsProcess object centergd
processes as the legal sequence of state changes of the processambjét Resource centered
process as a network of processing stations that interact with eachRytheess languages appear as
Graphbased languages (e.g. BPMN), Meatsed languages (e.g. Petets, flow nets) and Workflow
Programming Languages (e.g. BPEL). So, SOAs which are usually built with services as- loosely
coupled computing tasks communicatimger the Internet/network can be represented with Resource

1

Milan Milanovil

centered languages, such as BPMBS|,[which represent today dacto standardfor representing
business processes.

Recent researciiQ8 has identified a lack of explicit formalism in the process modeling languages
for capturing business rules. The key idea is to extract business logic contained implicitly in busine:
process models into explicit definitions of business ruléss shouldenable for improving business
agility, so that business processes cape withthe dynamic natureof business changes, and to
accommodatedynamic logic of many different applications. This allowsr the specification of
business knowledge in a way that usiderstandable by business useasd at the same time
understandable by technical users and executable by rule ergnogbus bridging the gap between
business and technolog$(. The approachvhich hard codesomebusiress logic within applications
cannot accommodate rapid and frequent changes of a business process without a heavy burden in te
of time and cost. Web services and business rules are complementary technologies that provide a g
approach to bridge suchgap. When these two approaches are deployed in combination, applications
gain strengths in ways that enhance business agility. The "lecseptled” approach of Web
services/SOA, together with the “deupled” approach of business rules enables applsat® better
represent business logic in "explicit" format that can be more flexible and easily modified and share
across many applications.

1.1. Research goals

From this we define research problem for this thesis and that is how to enable synergy betwe
businessrules language and a business processes languages for modeling SOAs in order to achie
agile SOAs (un-time change of a business progeg&ased on the research problem we define goals of
this thesis, and that is development of a methodology, &gegand software development environment
for modeling SOAs that enabler the synergeticusage of rule and process languages. Also, this
language and the software development environmenthwill supportthe languagewill be used as
research instruemt ofthe given research problem, and in the software development environment we
will evaluateour research goal3.herefore, research objectivestbfs integrationand also this thesis
are:

1 Defining a nethodology anda modelinglanguage fordeveloping rule-driven (agile)
business processes aB@AS;

1 Integrating of business rules and vocabularies with business process models used as desi
of SOASs;

1 Facilitating d/namic changeof a business process execution flow by making rules first
class citizens iusiness process modelidge to theideclarative rule nature;

1 Extracthg service compositions from ruleased business process models to make those
process models executable;

1 Translating business ruldefined by domain experiisto aformal representain suitable to
be used by service engineers;

91 Deploying rule and vocabulary enhanced process models onto rule and service compositiol
engines;

1 Defining conditions for interaction execution and constraints in those interactions.

In order to achievéhe abovementioned goalsve definedaresearch methodology in this thesighich
included the following activities
1 Reviewingand analyzinghe literature abouthe stateof-the-art in the areas 0$OA, business
rules, and business proces®deling in order to identify research gaps and position the
contribution of this work

PhD Thesis Modeling Rule-driven Service Oriented Architectures

91 Design and development @& developmentmethodology for defining ruldasedbusiness
processes an8OAs;

1 Design ofa modelinglanguage andh software development environment for modelingg-
basedousiness processes aBQAsS;

1 Evaluation ofthe modeling languageith respect to its capability to model common problems
in the relevant area (i.e., througlorkflow, message exchange, as@tvice interaction patterms
and by using a realistic aastudy

1.2. Contents per chapter

This thesis consists frosevenchaptes and a literature sectioAfter the Introducion section, we
given the overview of the MDE concepts and related techgooglenologies (MOF, UML, QVT, ...). In
addition, we described EclipsModeling Framework and Graphical Modeling Framework. We also
introduced business process languages, as well as the modeling and technological spaces. After tha
given a description of the existing rule and policy modeling languages, their usageite-Seiented
Architectures and modeling rules and policies, as well as for the development of Smigited
Architectures by using MDE principles that integrates rules and policies. We gave a review of currer
ServiceOriented Architectures and Web gees, and analysis of integration between business
processes and rules.

In the third chaptemnve give a proposal for a rBPMN language concrete graphical syntax, which
includes the integration of certaion BPMN elements (such as gateway) and differsndtypesiness
rules (reaction, production, derivation and integrity rules). This includes a proposal for extensions ¢
BPMN for modeling choreographies, with a reference to the common problems in choreograph
modeling in BPMN, as well as integration of PMiolicies in processes by using the appropriate
metamodel. Besides the graphical synax we gave a proposal for the rBPMN language metamodel
MDE architecture. In additiorwe gie the integrated methodology for development of secure Service
Oriented Archiectures, by using rBPMN models of business processimitgration of rules (R2ML)
and policies (PML) in order to support different aspects of these architectures. In addition, we gave
complete proposal for designing business processes, data andWeledso showeda support for
modeling policies in a process of development of Ser@dented Architectures (service compositions)
by using modeling and PML language. In proposed methodology we gave detailed steps that should
followed during the devepment of rulebased business processes.

The fourth chapterprovides a detailed evaluation of rBPMN language through modeling of the
four major types of service composition patterns. We gave a review of the Message Exchange patte
(MEPOGs) , c pattetns, onteractioh patterns and patterns for the agile business processe
Through these patterns we showed expressivity of rBPMN language for modeling various parts
business processes through integration with rules. All patterns were analyzedr#segossibilityof
their modeling by using rBPMN language. In this chapter we gave mapping between two types
process models in r BPMN language, interaction models and interconnection models.

The fifth chapter describes the case studies for rBPMN kagguhrough several scenarios of
ServiceOriented Architecture usage, i.e., service composition models. However, the possibilites of thi
language are not limited only to the described scenarios, but it is possible to model all of the patter
from the chater five.Specifically in this chapter we showexchestratiormodeling on the example of
the online product order, we also gave an example of choreography modeling in the process of tt
flight request and an example of modeling agile business prodessBBMN through book buying
over the Internet. This chapter also show an implementation of the application for modeling +BPMN
based processes, called rBPMN editor.

The sixth chapter gives overall description of r BPMN language evaluation based on attern
given in the chapter five. In this chapter we gave a comparative analysies of existing languages f
interaction modeling patterns, control flow patterns and agility patterns, through the analysis to improv

3

Milan Milanovil

modeling of these patterns by using the rBPMNguage. We also gave a review of modeling various
aspects in rBPMN, constraints in modeling by using standard BPMN, as well as possibiliteis fo
modeing these patterns by using rules.

The last chapter gives a critical review of the results achievedgdtirinresearch described in
this thesis. It discusses in detail the scientific, teclaindl practical contributions achieved in this study.
After that,we gavean analysis of possibilities of practical application of the results of this study. In the
end,we gave a plan fopossible future research.

PhD Thesis Modeling Rule-driven Service Oriented Architectures

2. Literature Review

This chapter surveys ttgtate of the art in the relevant areas and introduces background knothlatige
is important for understanding the concepts described in the rest of this thesislitlon, this chapter
describesusiness process modeling, rule languages, angriteiplesof model Driven Engineering.

2.1 Model Driven Engineering

Model Driven Engineering is not Model Driven Architectugd][MDA is an OMG standard and is
a specific version of the MDE approach. Favre defines MDE as an open and integrative approach
software development which involves many technological spaces 6Bb)n[a uniform way, and
MDA is only one nstance of MDE implemented in a series of technologies defined by the OMG (MOF,
UML, XMI).

MDA introduces a set of basic concepts, such as model-m@dal, modeling language and
transformation, and recommends categorization of all models to platidependent models (PIMs)
and platformspecific models (PSMs). However, MDA is not a software development process.

A technological space is defined as a working context with a set of associated concepts, body
knowledge, tools, required skills, and podgies [66]. It is often associated with a given user
community with shared expertise, educational support, common literature and even workshop at
conference meetings. Examples of technological spaces are MDA and MOF, bGraismarware
[58] and BNF, Documentware and XML, Dataware and SQL, Modelware and UML, etc.

An important aspect of MDE is that it bridges different technological spaces and integrate:
knowledge from different research commuasti In every space, model, matadel and transformation
concepts appear at various levels of abstraction and in a way can conform to certain concepts in anot
technical space. For example, what is cafl@detamodel in Modelware, conforms to somethihat is
calleda £hema in Documentwarey grammar in Grammarware, etc. 7], MDE is defined starting
from MDA by adding assignment in a process of software development and a space for mod
organization. Two illustrativexamples of the MDE process can be foundlingind [L0].

2.1.1. Definitions of model and modeling

The origin of the woranodelcan be traced to the Latmodulus which means a small measure.
A definition of model from 123 says that: & model is a representation of a concept. The
representation is purposeful: the model purpose is used to abstract from the reality the irrelevar
details’. Miller and Mukerji state that'A modé of a system is a description or specification of that
system and its environment for some purpose. A model is often presented as a combination of drawi
and text. The text may be in a modeling language or in a natural lan[&&)e

Computer science uses models in several phases of software development. MDA and MDE re
on modeling and models as their basic concepts. However, there is no single definition of model that
widely accepted in all computer scienSeidewitzdefinesmodela sa sét of statements about a system
under studg 121, and B8] defines model as amabstraction of (real or languagkased) system
allowing predictions or inferences to be mad€hereare anumber of other definitions, presented in
[67]. This thesis uses the following definition of modek rhodel represents a part of the reality called
the object system, and is expressed in a modeling language. &\ pnoddes knowledge for a certain
purpose that can be interpreted in terms of the object sy$tfh

Models usually serve as specifications in traditional engineering disciplines. When software i
constructed, models cdre used as specifications as well. A UML model can be used for describing an
existing software system (its structure and operations).

Model interpretationmeans mapping model elements to the elements of the object systen
(system under study), so that aeiic value of each model expression is obtained in the object system

5

Milan Milanovil

which is under study (with a certain level of accuracy). Thus, a model interpretation gives a model
meaning associated with the object system.

Modeling language€nable to write ex@ssions with elements in models of classes systems
under study. A working software system can be based on a model that represents a certain part
reality, while the software itself can be regarded as a model.

2.1.2. Modeling principles

In the world of softwag engineering, modeling has a rich tradition that reaches early days of
programming. More recent efforts are focusednmdeling languageand tools that permit users to
express the system parameters to software architects and programmers, in a wayhbairgguely
mapped to a concrete programming language and then compiled for a specific operating system. U
[96€] is currently the most widely accepted language for visual specification of models, which is adopte
as the dedcto industry standard for software modeling and standardized by the Object Managemel
Group (OMG). UML enables development teams to describe important characteristics of systems
appropriate models. Transformations between these models are usuallyplkstoamn manually,
although there are tools that can do automatic model transformétion [

A model is used for an indirect study of reality (i.e., of an object systérh) Yarious reasons
may cawse this indirectness. The object system may be inaccessible, or its direct study is too expensi
or even the object system may not exist yet. In all such cases, the model plays the role of a specificat
of the object system. Regardless of the reasamsirfdirectness, the model must be a valid
representation of the object system. The knowledge acquired from the model must hold for the obije
system. Often, this knowledge is not exact but only approximates the reality, with an acceptable degr
of inaccuacy. Furthermore, the knowledge acquired from the model is initially expressed in terms o
model elements. This knowledge must be interpreted and converted to knowledge in terms of the obj
system. The relation between a model and an object systendirediional and two separate relations
may be considered, dsgure 1 shows. This figure is called the DDI account (DDIDenotation,
Demonstration, Interpretation), and was first introduced th [

Denotation

Object system Model D Demonstration

Interpretation
Figurel. Relationships between an object system and its médel [

The object system iglenoted (represented) in a model. This denotation must preserve some
characteristics of the object system tmwa acquiring knowledge about it through the model. The
model is used to obtain claims about the model elements. This process is knd@mamstration It
happens only in the context of the model. Finally, the obtained results are mapped to the steject sy
This mapping is callednterpretation The knowledge obtained from the model must be verifiable
against the object system. If the results obtained from the model do not meet the empirical eviden
obtained from the reality, then the model is invalith respect to the object system.

Literature usually depicts only one relation between a model and its object system. Various nam
for the relation are usetodelOf RepresentationQRepresentediriMlodeledBy etc. ModelOfrelation
will be used in theemaining part of the thesis, because it accumulates two other rel@@&mstation
andInterpretation.

2.1.3. Meta - models and meta -modeling

As the name suggests, maet@deling is a modeling activity. Similarly, the product of meta

PhD Thesis Modeling Rule-driven Service Oriented Architectures

modeling, called anetamode] is a model. If an entity is a model, we have to be able to clearly identify
its object systemA metamodel is a model of the conceptual foundation of a language, consisting of a
set of basic concepts, and a set of rules determining the set of posseitdds rdenotable in that
language 33]. Therefore, a metanodel describes what models in that language can express. Based ol
this, we can conclude that a met@del is a model of models expressed in a given modeling language
[12]1]. Since a metanodel itself is a model, it is also represented in some modeling language. One
modeling language can have more than one -mei@el, each one represented in a different modeling
language. Of special interesttise case when the metmaodel of a modeling language uses the same
modeling language. In that case, expressions in the-mmeda| are represented in the same language
that describes the metaodel. This metanodel is calledreflexive metamodel Minimally reflexive
metamodeluses a minimum number of modeling language elements (for thatnmoekal purpose).
Since this metanodel is defined as reflexive, there is no need for upper levels, because it defines itse
with its own concepts.

Generally, there is anodelOfrelation between a metaodel and its object system; it is a
modeling languageAn instanceOfrelation between a metaodel and a model often replaces it.
Indeed, they coincide between the same entities but are different in nature. The gramaorae of s
programming language possesses characteristics of all words (and sentences) which that language
contain. Spwe can take a language grammar as a model of that language (an example of such
grammar is the Extended Backhaur Form, EBNF). In the sa of a modeling language, the model of
this language is its metaodel. The relation between a model written in some language and its meta
model is calledconformantTo[35]. This relation is defined as a composition of twoatiens:
elementOf denoting the membership of a model to a language,rgmeésentationQfdenoting the
relation between an object system and its model. An example of ammei, a model, and an
instanceOfelation is shown ifrigure?2.

Meta-model Java Grammar Java meta-model
(EBNF) (UML)
T T
| InstanceOf | InstanceOf
| (parsing) | (UML)
I I
| I
ModelOf ModelOf ModelOf |
Member of a Java program Java program

the Language =) e

Figure2. Example of metanodels, models andstanceOfelations 7]

An important difference between the two relations is observed when the lardp@e@ent nature of
instanceOfis consiegred. Let us assume that we define another -meidel of the Java language
expressed in UML (se€igure 2). The UML metamodel may contain a clagalled Method. The
knowledge we obtain is that there is a set of methods in eagaypfogram that has a certain structure.
We must be able to identify methods in the source program and to recognize their structure according
the definition of the Method class. It is the consequence d¥itiaelOfrelation that exists between the
Javametamodel and a Java program. However, we cannot consider the Java program as an instance
the UML model in the same way as we did it for the Java grammar. An instance of the UML model i
defined according to the semantics of UML, and is a set of tsbj€his instance is a representation of
the Java program and is a different entity. The UML model of Java is also a model of the Java progre
represented in UML. In addition, there isiastanceOfelation between these entities governed by the
UML semanics. Much like the relation between a source program and its grammaindfasceOf
relation helps us interpret the knowledge from the UML model in terms of the Java program represent

Milan Milanovil

in UML. These twoinstanceOfrelations are different. The first ome defined for the parsing process.
The second one relies on the UML semantics. There is no direct largprgjécinstanceOfrelation
between a source program in Java and its UML model. However, the latter is a model of the forme
although we cannotace the knowledge from the model to the object system \viastanceOfelation.

In summary, we can say thatstanceOfrelation exists between a class and its members and
supports the interpretation of the knowledge obtained from the class defimtiterms of class
members. In that case, we also hawaglelOfrelation between the class definition and class members.

2.1.4. Meta - modeling architecture

A metamodeling activity can be applied to specify a modeling hierarchy that assumes-a multi
level organiz#ion, calledmetamodeling architectureFigure3 shows an example of this architecture.

ModelOf

VR

Meta-metamodel level MLModely.

ModelOf ConformsTo

T
I
I
1

Meta-model level LModely.

ModelOf ConformsTo

FAY
I
I
|
I

Model level a Model,_

Figure3. Metamodeling architectureo[/]

The ConformsTaelation means that a modslconstrained by the rules defined in its raetadel. At
the bottom level of this architecture, we have models expressed in various modeling languages. Tl
level is called thenodel level An example model in this level Model written in a modelingdnguage
L. We can build a model df (that is, a metanodel) LModel,. expressed in another language, called
Metalanguage(ML). Models of the languages used in the model level form the second level in the
stack. It is called thenetamodel level There isa ModelOf relation between the metaodel of a
language and models expressed in that language. We can apply the same approach to the models &
metamodel level. The models of the languages that expressmudals form the third level, called the
metametamodel levelAt the third level of the metmodeling architecture shown Higure 3, the
model MLModel is expressed in th#L language itselfln this way, the top level contains a self
reflective model. It is expressed in tlamguage that is modeled by that model. The intuition behind this
is the following. At the metanodel level, we have models of modeling languages expresddd.in
However,ML is a modeling language itself, and therefore it should be possible to Mppiiself to
express its model.

Examples of technologies that rely on matadeling architecture are Meta Object Facility
(MOF), sectior2.1.5.1 and Eclipse Modeling Framework (EMF), sectihh.5.5

8

PhD Thesis

Modeling Rule-driven Service Oriented Architectures

An example of the relation between a model and its /imetdel inFigure4 that represents the
metarelations between a Petri Net model and a simplified Petri Net-metkel, represented in UML.
Metarelation, associates each etmof a model with the metaodel element it instantiates.

-net

Petri Net meta-model

-

LocatedElement

-location : String

i

NamedElement

-name : String

AN

PetriNet

-net -elements Element

-«
' .

T

|

Place

Transition

/s

S

Arc
-weight : Integer

| - |

-arcs

PlaceToTransition TransitionToPlace

\ /

-incomingArc
.

1 3 1 2N % g " 1.
3 5 \ E g ‘é,
VY~ ¢ ¥ /

NN

Kﬂ’orm To

meta relations

utting into
service

Petri Net model

Available

Los[?/

Deleted

Lent

Lending

Figure4. Meta relations between Petri Net model and maddel §] [36]

As any other model, a Petri Net modeltwork is composed of a certain number of different elements.
In the context of Petri nets, these elements conforphatces transitionsandarcs and they constitute a
model. These different elements, together with the way they are connected, canttwnPetri Net

Milan Milanovil

metamodel. In the same way, each model conforms to its-mei@el. This relation associates each
model element with a metaodel element that it instantinates. In addition, the matdel itself can
conform to some metmetamodel (as it ishown inFigure3, MLModely.).

2.1.5. Model Driven Architecture

The Model Driven Architecture (MDA) defines an approach s$pecifying Information
Technology (IT)systens andthat separates the specification of functionality from fhecHication of
the implementation of that functionality on a specific technology platf@sh [The MDA approach
and the standards that it supports enédyea model that determines some system functionality to be
realized ommultiple platforms through additional standards for mappiige MDA is specified by the
OMG consortium in a series of standardsnified Modeling Language (UML), Met®bject Facility
(MOF), Common Warehouse Metamodel (CWM), etc. An illustration of tfi@AMdea is shown in
Figure5.

Finance

A

Manutacturing E-Commerce

Figure5. Model Driven Architecture (OMG)

Model is the most basic element the MDA. There are several definitions of the term "model" (see
section2.1.7), and the most general one is that a model is a simplified view of rekli®y Each model
itself is defined for some domain, and then it is transformed to models that can be executed on a spec
platform. A bast assumption of MDA is that a unique model underlies each information system. Such :
model does not depend on a potential implementation platform, on which the corresponding applicatic
can be run. In other words, the system requirements can be spesifeefoaputation Independent
Model (CIM) [85]. The model defined at this level is sometimes also calledidoh@gain modebr the
business modellt does not depend on how the system is implemented. In software engineering,
doman model is specified by the domain expeRkatform Independent Mod@PIM) can be also used
to describe a system. It is lowkewvel and more specific than CIM in terms of being a computation
related model, but it does not include characteristics offspeomputer platforms. To get a model that
takes into account some target platform specifics, i.@ladorm Specific Mode{PSM), we needo
define certain transformations that transform the corresponding PIM to the desired PSM. Each PS
includes infemation about some software implementation details (such as the programming languac
and operating system) and the hardware platform. Code generation is done by additional translati
from the PSM into a certain programming language.

The MDA is based on for-layer metamodeling architecture shown in. The standards supporting the
four-layer MDA architecture are:

1 MetaObject Facility (MOF);

1 Unified Modeling Language (UML);

! The Object Management Grouptp://www.omg.org/.

10

PhD Thesis Modeling Rule-driven Service Oriented Architectures

1 XML Metadata Interchange (XMl).

M1 Layer

Models based on
UML models M custom meta-model H model
|

l MO Layer
The Real World reality

Ontological instantiation

Figure6. The fourlayer Modé Driven Architecture and its orthogonaktanceOf

I —

|

! MOF M3 Layer
- ! meta-meta-model
2 : // ! \\
- — |
= c
E % i I [
[N
= =l) UML J Custom J M2 Layer
o -% : Ml Profile Meta-model meta-model
‘HES | | |
= E |
3 (% v I |
= |] —

|

|

|

|

|

relations: linguistic and ontologica3T]

On top of this architecture, at the M3 level, is a reflexive mettamodel, which is called
MOF. It is an abstract seffefined laguage and a framework for specifying, constructing, and
managing technologically independent metadels. It is a basis for defining any modeling language,
such as UML or MOF itself. MOF also defines a backbone for the implementation of a metadata (i.e
model) repository described by meatadels. The rationale for having these four levels with one
common metanetamodel is to enable both the use and generic managing of many models and met
models, and to support their extensibility and integration.

All metamodels, standard and custom (udefined), that are defined in MOF are placed at the
M2 level. One of these metaodels is UML, which is a language for specifying, visualizing, and
documenting software systems. The basic UML concepts (e.g. Class, Missp@tc) can be extended
in UML profiles in order to adapt UML for specific needs. Models of the real world, which are
represented by concepts of a metadel from the M2 level, are at the M1 level of the MDA fdewel
architecture. The bottom layertise instance layer (M0). At the MO level are things from the real world
that are modeled at the M1 level. For example, the MOF Class concept (from the M3 level) can be us
for defining the UML Class concept (M2), which further defines the Student cofM&ptThe Student
concept is an abstraction of a real thatgdent

One can ask the question: what layer contains abstractions of a certain model? If we consid
classes, their instances in UML are objects. However, objects are defined at the M2 tleedl/ ML
metamodel, which means that their instances are located in the M1 layer. Since even objec
themselves model concrete (singular) «eatld things, this explanation can be considered trugs]li
is said that therare two types of instantiation in metadeling:linguistic andontological Linguistic
instantiation ignterpreted irthe MDA in an ordinary way it means that a UML class is an instance of
the metaclass from the UML metaodel. However, one class some domain has instances that are
objects. The relation between objects atakssis an ontologicainstantiationrelation. This kind of
instantiationconnects abstractions locatatthe same linguistic layer. According to this interpretation,
at the MO layer are things from real world (instances) and abstract concepts about thing group

11

Milan Milanovil

(classes). UML 2.0 and MOF 2.0 emphagizelinguistic dimension. Ontological levels exist at the M1
level, but the metanodel border does not explicitly separate thdrhis is based on an altered
perception of the MDA foutayer architectureasoriginally class instances have been located in the MO
layer.

XML Metadata Interchange (XMl) is the standard that defines mappings of-bH3&d meta
metamodels, metmodels, andnodels onto XML documents and XML Schema88][Since XML is
widely supported by many software tools, it empowers XMI to enable better exchange ef mete
metamodels, models, and models (see settibib.3.

2.1.5.1. Meta -Object Facility (MOF)

MetaObject Facility (MOF) 92] in its current version (2.0) represents an adaptation of the
UML core. MOF is a minimal set of concepts that can be used to define other modeling langusges. It
similar (but not identical) to the part of UML used in structural modeling. In the latest version of MOF
(2.0), concepts, as well as UML Superstructure conc&pisdre derived from the concepts defined in
the UML Infrastucture standarfbg).
Figure7 shows metanodels that depend on the UML core package. UML Core package defines
the basic concepts that are used in mod€gl@g. Elements, Relationshipsnd Classifigs). In MOF
2.0, there are two metaetamodels:
1 Essential MOREMOF) - represents a basic package that has a minimal number of elements fo
modeling(e.g, Class , Property , andOperation).
1 Complete MOF(CMOF) - more complex, includes EMOF, but also enab&shigher
expressivity, with concepts suchlask , Argument , Extent , andFactory

1 1
MOF | | UML
_l ,//
Core
/;1 ey,
CwM Profiles

Figure7. Core package as the common ker3&] [

The main four modeling concepts in MOF are:
1 Class - models MOF metabjects, concepts which are entities in reiadels €.g9.,UML
Class , Attribute andAssociation);

1 Association - models binary relationships.g.,UML and MOF superclass);
1 Package - modularizes other concepts, i.e. groups similar concepts;
1 DataType - modds primitive types €.g.,String andinteger).

In the root of the MOF hierarchy is tHeement concept. It classifies elementary, atomic
model elements. All other concepts in MOF inherit from this concept.

12

PhD Thesis Modeling Rule-driven Service Oriented Architectures

2.1.5.2. Unified Modeling Language (UML)

Unified ModelingLanguage (UML) is a language for specifying, visualizing, and documenting
software systems, as well as for modeling business and othaofterare system®p]. UML enables
diagram construction, which models a system by d@agrconceptual things (e.g., a business process)
and concrete thgs (e.g., software components). UML is not limited only to software engineering
domain; it can be used in other areas, such as: banking, health care, defense, etc. UML is oft
identified as a graphical notation, which was true for its initial versions. Recently, UML is recognized
more like a language independent from a graphical notation rather than a graphical notation itself.

The basic building block of UML is a diagram. There are sévgpas of diagrams for specific
purposes (e.g., time diagrams) and a few for generic use (e.g., class diagrams). UML version 2.0 defil
the following types of diagrams:

1 use case diagram;

1 class diagram;

1 behavior diagrams:

0 activity diagram;
0 statechart diagm;
1 interaction diagrams:
0 sequence diagram;
0 collaboration diagram;
1 implementation diagram;
0 component diagram;
0 deployment diagram.

When UML is applied to software, it represents a bridge between the original idea for som
software and its implementatiori(4. UML also provides a possibility for collecting specific
requirements for some specific system.

UML as a graphical notation is not a software process; it is designed for use in a process
software development and it pesses all characteristics that enable it to be a part of a software
development process. Since main UML diagram concepts are definedSnpkestructurgpackage of
the UML specification that includes basic concepts of the UML c@8g it can be said that MOF and
UML are very similar.

2.1.5.2.1. UML Profiles

UML Profiles combine concepsttereotypestagged valugsandconstraintsin order to define a
precise UML dialect for a specific purpose. This means that it is possible to cevateypes of
elements for modeling by extending existing elements. When new elements are created, it is possible
add them to existing UML tools. With profiles, classes can be extended with stereotypes that represe
predefined classes with certain methoaind attributes. For examplEjgure 8 shows one such a
stereotype EJBEntityBean.

A UML Profile definition in the context of the MDA fotayer metamodeling architecture
means extending UML at the mataodel layer (M2). Taggedalues are defined as stereotype attributes
(in Figure 8 tagged values oEJBEntityBean arelsReadOnly DataSource etc.). It is possible to
define constraints that additionally refine the semantics of the modeling elementdletyaaghed to.
They can be attached to each stereotype using OCL (Object Constraint Langudige)English
language (i.enatural anguage) comment s, in order to preci

13

Milan Milanovil

«metaclass» \
Class {All atributes must be stereotyped as <<EJBCmpField>> or subclasses.}

T

<<Stereotype>> ©
EJBEntityBean <<Enumeration>>
-IsReadOnly : Boolean TransactionlsolationLevel

-DataSource : String -Required
-DBTableName : String -RequeriesNew
-lsCacheBetweenTransactions : Boolean -Supports
-TransactionAttribute : TransactionlsolationLevel -Never

Figure8. An exampe UML Profile for Enterprise applications in Java

So far, many important UML Profiles have been developed. Some UML Profiles are adopted by OMC
such as Enterprise Application Integratidi3®] and UML Profile for MOF [33. In addition to these
formal specifications, there are several walbwn UML Profiles widely accepted by software
engineerssuch as UML Profile for building Web application developgdim Conallen 19].

2.1.5.3. XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) is an XMbased standard for sharing metata in the MDA
[93]. XMl is defined by XML, using two XML Schemas:

1 XML Schema for MOF metanodels;

1 XML Schema folML models.

The first one defines the syntax for sharing both M&aBed metanodels and the MOF
definition itself. Since UML is a modeling language that developers use for describing various model
it is obvious that there is a need for an XML Schemaefchanging UML models. In fact, there is a
standardized one called the UML XMI Schema. The UML tools such as IBM/Rational Rose, Poseido
for UML, Together, etc. support it, but some researchers report that we always loose some informati
when sharing UM models between two UML toold26. OMG has released several versions of the
XMl standard:1.0, 1.1, 1.2 and 2.0, and the latest version is 2.1.

Figure9 shows the relationship between UML models XMl files.

XML Schema XML
XMI Schema XMI
» Create Instance
UML Model
Data Definiton Data Values
R‘?"egsf* Methods
Enginecring Definiton Definition

Figure9. Relationship between UML, XML Schema and XMI

Since there is a set of rules for mapping UML and MOF models to XML Schema, it is possible
to create XML Schema for every UML model. Objects as instances of auoiodel can be
interchanged conforming to these schemas. An XML Schema can be created for aibadé@Fneta
model.

An example of an XMl file (in version 1.2) is shownHigure10.

14

PhD Thesis Modeling Rule-driven Service Oriented Architectures

<XMI xmi.version ="' 1.2 "' xmins:Model ="' org.omg.xmi.namespace.Model >
<XMl.content >
<Model:Package xmi.id =' al' name =' OCL annotation =" isRoot ="' false '
isLeaf ="' false ' isAbstract ="' false ' visibility ="' public_vis ">
<Model:Namespace.c ontents >
<Model:Association xmi.id ="' a2’
name ="' A_Operation_parameters_Parameter_operation
annotation =" isRoot ="' true ' isLeaf ="' true ' isAbstract ="' false '
isDerived ="' false '>
<Model:Namespace.contents >
<Model:AssociationEnd xmi.id =' a3' name =' parameters ' annotation ="
isNavigable ="' true ' aggregation ="' none' isChangeable =' true >
<Model:AssociationEnd.multiplicity >

<XMl.field >0</ XMl.field >
<XMl.field >-1</ XMl.field >
<XMl.field >true </ XMl.field >
<XMl.field >true </ XMl.field >

</ Model:AssociationEnd.multiplicity >
S
</ Model:AssociationEnd >
<l .. ->
</ Model:Namespace.contents >

<! - >

</ Model:Association >

</ Model:Namespace.contents >

</ Model:Package >
</ XMl.content >
</ XMI>

Figurel10. An except from the MOF XMI document representing the OCL matadel

2.1.5.4. Object Constraint Language (OCL)

Object Constraint Language 2.0 (OCL) as an addition to the UML 2.0 specification. It provides
a way for expressing constraints and logic in models. OCL repseadahguage for defining integrity
rules. It is not new in UML 2.0; OCL was first introduced in UML 1.4. However, from UML version
2.0 it is formalizedoy using MOF 2.0 and UML 2.0, which is definedtie UML OCL2 specification
[94]. OCL is just what its name says: a language. It has its syntax and semantics defined by the UN
language, and it has keywordBy its design, OCL represents just a query language, and it cannot
change a model in any way{J4.

OCL can be used for expressing: different-@ed postconditions, invariants (constraints that
always must be true), constraint conditions, and results of model executing. It can be used anywhere
UML, and it is usually associated to a clagauBing a comment (annotation). When an OCL expression
is evaluated, the result is temporary. This means that the associated class, i.e., its concrete instar
(objects), cannot change its condition during the expression evaluation.

OCL has four basic da types:Boolean , Integer , Real and String . Each OCL
expression must have a context. The context can often be identified by where the expression is writt
For example, a constraint can be attached to an element by using a comment. The context of a cl
instance can be referred to by using the keywsmifi . For example, if we have a constraint on the
classStudent that says: "a student's average grade (attridweeageof type Real), must always be
greater than 5.0", an OCL expression can be attachée tassStudent by using a comment and by
referring to the average in this waglf.average > 5.0

OCL also includes constraints on methods and attributes, as well as different types of condition
and possesses a possibility (methods) for manipglat#a collections.

15

Milan Milanovil

2.1.5.,5. Eclipse Modeling Framework (EMF)

Eclipse Modeling Framework (EMF) is a conceptual modeling framework for Ecliisé. |
Eclipse is an operource project lead by a consortium of companies, IBM being anheng twith the
goal to provide a highly integrative tool platform. Its current version id 2S&ptembeR010). Eclipse
includes a core and generic environment for tool integration and a Java environment for developme
that is built by using that core.tir projects use the basic core to support different types of tools and
development environments. The projects in Eclipse are implemented in Java and can be run on m
operating systems.

The Central part of the EMBased modeling is a model, which inchsda set of elements
defined by UML and its standard notation. It is a UML class diagram in the first place. In the EMF, &
model is not that general and higgvel as it is usually assumed.

The EMF does not require a complete, distinct methodology or sopigisticated tools for
modeling. Eclipse Java Development tools are the only tools that are really needed. EMF connec
modeling concepts directly with their implementations, thus bringing Eclipse and Java programmelt
closer, which results in modeling ggbilities that are easy to learn.

2.1.5.5.1. Basic concepts of the Eclipse Modeling Framework

EMF is a Javdbased environment for development of tools and other applications based on :
structured model. It enablgser developng a complete model for an applicatiddy using UML
diagrams. This model can be used only for documentation, or it can be used as input for generating
part of an application or the complete application. This class of modeling usually requires expensi\
tools for objectoriented analysis andesign. EMF is often used as a model handler, by model
transformation tools. An important characteristic of the EMF is that it offers a "low entry price" becaust
it requires only a small portion of UML modeling (classes and their attributes and relatenshly a
graphical modeling tool. EMF uses XMl for storing model definitions. To create such a document, ther
are four options:

1. creation of an XMI document, directly, by using an XML or text editor;

2. export of anXMI document from modeling tools (sues IBM Rational Rose);
3. annotation of Java interfaces with model attributes;

4. use ofXML Schema to describe the form of model serialization.

The first and third approaebrequire knowledge of XML and Java, respectively, which is good
if the developeris familiar with these technologies. The second approach is preferred if we use @
modeling tool. The last approach is suitable for creating applications that must read or write some XM
content to a file.

EMF consists of three fundamental pieces: Core, EME&@iEMF.CodegenCore provides a
basic support for generating and executing classes implemented in Java for a model. It includes a m
model (ECore) for describing models and runtime support for the models including change notificatior
persistence suppt with default XMl serialization, and an efficient reflective API for manipulating
EMF objects generically. EMF.Edit includes generic reusable classes for building editors for EMF
models and extends the Core by adding support for generating adaptes ttassnable preview and
work with the model, as well as a basic (visual) editor for the model. It also has a command framewor
including a set of generic command implementation classes for building editors that support full
automatic undo and red@he EMF code generation facilityeMF.Codegehis capable of generating
everything needed to build a complete editor for an EMF model. It includes a GUI from which
generation options can be specified, and generators can be invoked. The generation Yacdipede
the JDT (Java Development Tooling) component of Eclipse.

16

PhD Thesis Modeling Rule-driven Service Oriented Architectures

An overview of possibilities and the process of creating an ECore model are shiéiguareil 1.

Figurell Creating a platform independeéfCore model

EMF also supports three levels of code generation (from the model). It can genevade!,
which is Java interfaces and implementation classes of all of the model classes,, adaipteadaps
the model classes for editing and display @mllitemProviders)and editor, which is actually a
structured editor for an EMF model.

2.1.5.5.2. ECore modeling concepts

The model used to represent EMF models is called ECore. ECore is itself an EMF model, so w
can say that it is the metaodel to itself and issually used to specify platform independent models. It
is actually also a metaetamodel. There is often a misunderstanding about-metamodels, but this
concept is actually very simpl& metametamodel is just a model of another model, and if thatr othe
model is a metanodel to itself, then metmodel is actually metanetamodel (this concept can
recursivelygo to metametametamodels, but ECore puts a limit here, because it is described by itself).
Figure 2.34 shows the ECore model with its core elesn@ttributes, relations and operations).

17

